What Every Computational Researcher Should Know About Computer Architecture*

*Plus some other useful technology

Ian A. Cosden, Ph.D. Manager, HPC Software Engineering and Performance Tuning Research Computing, Princeton University

Princeton Research Computing Bootcamp October 29, 2018

Outline

- Motivation
- HPC Cluster
- Compute
- Memory
- Disk
- Emerging Architectures

Why Care About the Hardware?

- Get the most of out the next few days
- Be able to ask better questions and understand the answers
- Prevent programming mistakes
- Make educated decisions
- Architecture changes can force new design and implementation strategies
- Reproducibility
- Exploit the hardware to your advantage (performance)

Software Stack

Why Care About HPC Hardware?

- High-Performance Computing (HPC)
 - Aggregate computing power in order to deliver far more capacity than a single computer
 - Supercomputers
- Some problems demand it from the onset
- <u>Many</u> problems evolve to need it
 - When you outgrow your laptop, desktop, departmental server
 - Need to know capabilities and limitations

Moore's Law

- Number of transistors doubles ever 18-24 months
- More transistors = better, right?

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Date of introduction

The Free Lunch is Over

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Top 500 Supercomputers

https://www.top500.org

https://www.nextplatform.com/2016/06/20/china-topples-united-states-top-supercomputer-user/

Intel Is (the Current) King

https://www.revolvy.com/page/TOP500

Outline

- Motivation
- HPC Cluster
- Compute
- Memory
- Disk
- Emerging Architectures

Zoom In On A Cluster

- A <u>cluster</u> is just *connected* collection of computers called <u>nodes</u>
- A single-unconnected node is usually called a <u>server</u>
- Entire clusters and stand alone servers are sometimes referred to as machines

Parallel Computers

- HPC [Linux] Cluster
- A collection of servers connected to form a single entity
 - Each is essentially a self contained computer
 - OS with CPU, RAM, hard drive, etc.
- Stored in racks in dedicated machine rooms
- Connected together via (low latency) interconnects
 - Ethernet < Infiniband, OPA (Intel's Omi-Path Architecture)
- Connected to storage
- Vast majority of HPC clusters
- SMP System
 - <u>Symmetric Multi-Processing</u>
 - CPUs all share memory essentially one computer
 - Expensive and serve unique purpose
 - Huge memory and huge OpenMP jobs

Princeton's Della Cluster

Basic Cluster Layout

Cluster Decomposed

- Login Node(s)
 - Edit, debug, compile, and interact with scheduler
 - Not for long running jobs!
- Scheduler
 - You tell the scheduler what resources you need
 - # of cpus, #of nodes, GB of memory, # of hours, etc
 - Then what to do: "run this program"
 - Scheduler then assigns hardware exclusive for your job
 - SLURM on our machines
- Storage
 - /home directories NFS mounted everywhere
 - Each compute node has local storage
 - Some clusters have more storage options
 - Parallel, backed up long term storage
 - See researchcomputing.princeton.edu

Modern HPC Cluster

Tiger has 40 cores per node and 392 nodes For a total of more than 15,600 cores!

Nodes Are Discrete Systems

- Memory Address space
 - Range of unique addresses
- Separate for each node
- Can't just access all memory in cluster

Serial Code

Multithreading (OpenMP, Pthreads, etc.)

Message Passing Interface (MPI)

Clusters With Accelerators

- Accelerators: GPUs or Xeon Phi (KNC, KNL)
- Programmable with MPI + x
 - Where x = OpenMP, OpenACC, CUDA, ...
 - Or x = OpenMP + CUDA, ...
- Increase computational power
 - Increase FLOPS / Watt
- Top500.org
 - Shift toward systems with accelerators a few years ago

Outline

- Motivation
- HPC Cluster
- Compute
- Memory
- Disk
- Emerging Architectures

Multicore Processors

- (Most) modern processors are multicores
 - Intel Xeon
 - IBM Power
 - AMD Opteron
 - ARM processors
 - Mobile processors
- Most have vector units
- Most have multiple cache levels
- Require special care to program (multi-threading, vectorization, ...)
- Instruction set
 - x86_64 Intel and AMD
 - Power, ARM, NVIDIA, etc have different instruction sets

Motherboard Layout

- Typical nodes have 1, 2, or 4 <u>CPU</u>s
 - 1: laptop/desktops/servers
 - 2: servers/clusters
 - 4: high end special use
- Each CPU is attached to a socket
- Connected together by interconnect
- Memory associated with CPU
 - Programmer sees single node memory address space
- Each CPU has multiple cores

Motherboard Layouts

Elmer / Tuura / Lefebvre

||_||| ΪЩΪ Intel QPI/UPI, Memory Interconnect AMD HT ····· SATA I/O Hub USB 🚽 PCle

Symmetric MultiProcessing (SMP)

front side bus (FSB) bottlenecks in SMP systems, device-to-memory bandwidth via north bridge, north bridge to RAM bandwidth limitations.

Non-Uniform Memory Access (NUMA)

physical memory partitioned per CPU, fast interconnect to link CPUs to each other and to I/O. Remove bottleneck but memory is no longer uniform – 30-50% overhead to accessing remote memory, up to 50x in obscure multi-hop systems.

Example: Intel Skylake CPU

Core Definition (Jarp):

 "A complete ensemble of execution logic, and cache storage as well as register files plus instruction counter (IC) for executing a software process or thread."

Memor

Memory Controller

- UPI Intel UltraPath Interconnect
- PCIe Peripheral Component Interconnect Express
- DMI Direct Media Interface
- DDRIO Double Data Rate IO

Skylake Core Microarchitecture

Key Components:

Control logic Register file Functional Units

- ALU (arithmetic and logic unit)
- FPU (floating point unit)
- Data Transfer
- Load / Store

Vectorization

At the inner-most loop level

for (int i=0; i<N; i++) {
c[i]=a[i]+b[i]; }</pre>

Scalar (SISD)

One operation One result

One operation *Multiple* results

Vectorization Terminology

- SIMD: Single Instruction Multiple Data
- New generations of CPUs have new capabilities
 - Machine (assembly) commands that take advantage of new hardware
 - Called "instruction set"
- SSE: Streaming SIMD Extensions
- AVX: Advanced Vector Extension

HPC Performance Metrics

- FLOP = <u>Fl</u>oating-point <u>Op</u>eration
- FLOPs = <u>Fl</u>oating-point <u>Op</u>erations
- FLOPS = <u>Fl</u>oating-point <u>Operations Per Second</u>
 - Often FLOP/sec to avoid ambiguity
- FLOPS/\$
- FLOPS/Watt
- Bandwidth: GB/s
- Usually Double Precision (64-bit)
- Calculation
 - FLOPS = (Clock Speed) *(Cores)*(FLOPs/cycle)

N.B. - not to be confused with a Hollywood flop!

Intel Xeon (Server) Architecture Codenames

- Number of FLOP/s depends on the chip architecture
- Double Precision (64 bit double)
 - Nehalem/Westmere (SSE):
 - 4 DP FLOPs/cycle: 128-bit addition + 128-bit multiplication
 - Ivybridge/Sandybridge (AVX)
 - 8 DP FLOPs/cycle: 256-bit addition + 256-bit multiplication
 - Haswell/Broadwell (AVX2)
 - 16 DP FLOPs/cycle: two, 256-bit FMA (fused multiply-add)
 - KNL/Skylake (AVX-512)
 - 32 DP FLOPs/cycle: two, 512-bit FMA
- FMA = (a × b + c)
- Twice as many if single precision (32-bit float)

Outline

- Motivation
- HPC Cluster
- Compute
- Memory
 - Layout
 - Cache
 - Performance
- Disk
- Emerging Architectures

Memory Hierarchy

Dual Socket Intel Xeon CPU

	Registers	L1 Cache	L2 Cache	L3 Cache	DRAM	Disk
Speed	1 cycle	~4 cycles	~10 cycles	~30 cycles	~200 cycles	10ms
Size	< KB per core	~32 KB per core	~256 KB per core	~35 MB per socket	~100 GB per socket	ТВ

Does It Matter?

http://web.sfc.keio.ac.jp/~rdv/keio/sfc/teaching/architecture/architecture-2008/hennessy-patterson/Ch5-fig02.jpg

Outline

- Motivation
- HPC Cluster
- Compute
- Memory
- Disk
 - Types
 - Filesystems
- Emerging Architectures

File I/O

"A supercomputer is a device for turning compute-bound problems into I/O-bound problems."

-- Ken Batcher, Emeritus Professor of Computer Science at Kent State University

File I/O?

https://en.wikipedia.org/wiki/Transport_in_Bangkok

Types of Disk

- Hard Disk Drive (HDD)
 - Traditional Spinning Disk
- Solid State Drives (SSD)
 - ~5x faster than HDD
- Non-Volatile Memory Express (NVMe)
 - ~5x faster than SSD

Photo Credit: Maximum PC

Types of Filesystems - NFS

- NFS Network File System
 - Simple, cheap, and common
 - Single filesystem across network
 - Not well suited for large throughput
 - (/home on Princeton clusters)

≤ 8 storage devices

Parallel Filesystems

- GPFS (General Parallel Filesystem IBM)
 - Designed for parallel read/writes
 - Large files spread over multiple storage devices
 - Allows concurrent access
 - Significantly increase throughput
 - (/tigress and /scratch/gpfs)
- Lustre
 - Similar idea
 - Different implementation
- Parallel I/O library in software
 - Necessary for performance realization

Outline

- Motivation
- HPC Cluster
- Compute
- Memory
- Disk
- Emerging Architectures
 - Xeon Phi
 - GPU
 - Cloud

Emerging Architectures

- The computing landscape changes rapidly
- 110 TOP500 systems have accelerators (June 2018)

Accelerator/Co-Processor - Performance Share

Intel Xeon Phi a.k.a. Intel MIC

- MIC: Many Integrated Cores
- x86-compatible multiprocessor architecture
- Mostly used as a co-processor
 - Data travels over PCIe
- Programmable using
 - C, C++, Fortran
 - MPI, OpenMP, OpenCL, ...
- ~1 year ago
 - Intel announced end of product line

NVIDIA Pascal

- Graphic Processing Unit (GPU)
- Exclusively a co-processor
 - Data travels over PCIe
- Not compatible with x86 library
- Programmable using:
 - Cuda, OpenCL
 - OpenACC, OpenMP

Accelerator Comparison

	Xeon Gold 5122	Xeon Platinum 8180M	Xeon Phi 7290F	NVIDIA V100
Cores	4	28	72	84 SMs
Logical Cores	8	56	288	5120 cores
Clock rate	3.6 – 3.7 GHz	2.5 – 3.8 GHz	1.5-1.7 GHz	1530 MHz
Theoretical GFLOPS (double)	460.8	2240	3456	7450
SIMD width	512 bit	512 bit	512 bit	Warp of 32 threads
Memory			16 GB MCDRAM 384 GB DDR4	32 GB
Memory B/W	127.8 GB/s	127.8 GB/s	400+ GB/s (MCDRAM) 115.2 GB/s	900 GB/s
Approx. Unit Price	\$1,200	\$13,000	\$3,400	\$9,000

Demystifying the Cloud

- "Regular" computers, just somewhere else
- Provide users with remote virtual machines or containers
- Can be used for anything:
 - Mobile-services, Hosting websites, Business Application, ...
 - Data Analysis, High Performance Computing
- Providers
 - Major players: Amazon, Google, Microsoft, HP, IBM, Salesforce.com, ...
 - Lots of others

Cloud Computing

- Advantages:
 - *Potentially* lower cost:
 - Pay as you go
 - *Potentially* lower cost:
 - Save on sysadmins and infrastructure
 - *Potentially* lower cost:
 - Economy of scale: providers
 - Scaling up or down as needed
 - Can be used to run overflow from a regular data center
 - Access to a wide range of hardware
- Additional challenges
 - Data movement
 - Expensive and time consuming
 - Security, privacy, ...

What We Didn't Talk About

- Pipelining
- Microarchitecture (ALU, FPU, ...)
- Cache lines and cache coherence
- Virtual memory
- Interconnects (network)
- FPGAs

Resources & References

- Very nice glossary: https://cvw.cac.cornell.edu/main/glossary
- J. Hennessy, D. Patterson, Computer Architecture: A Quantitative Approach, 6th edition (2017), ISBN 978-0128119051
- U. Drepper, What Every Programmer Should Know About Memory, <u>http://people.redhat.com/drepper/cpumemory.pdf</u>