
Using the Parallel Programming Model,
OpenACC, to do

More Science and Less Programming

Sunita Chandrasekaran
Asst. Professor, Dept. of Computer & Information Sciences

University of Delaware
Oct 27, 2018 Princeton University Bootcamp

Computational Research and Programming Lab

Hardware Evolution: Trends

Intel’s Knights Mill

Nvidia Kepler
Nvidia Pascal

Tilera

Xtreme DATA

SGI RASC

IBM Cyclops64

CPUs Cell BE IBM Power 7

IBM Power 8

Before 2000

2010

2017 +

Nvidia Volta
TI’s ARM + DSP

IBM Power 9 IBM Power 6

Single core
systems

Multicore
systems

Heterogeneous
systems

IBM True North

Quantum Computers

FPGA Virtex 7

Intel’s Knights Landing
(offloading model)

2015

Nvidia Turing

2012 World’s fastest supercomputer. AMD processor + NVIDIA K20

2018 World’s fastest supercomputer. IBM Processor + NVIDIA V100

Has the software caught up yet?

• On-node programming has become even more a challenge
• Need to explore billion way concurrency
• Challenges
– Migrating/Porting legacy code to current and upcoming platforms
– Write once and reuse multiple times
– Maintainable software

5

Several ways to program

DirectivesProgramming
LanguagesLibraries

Applications

Drop in acceleration Maximum Flexibility Used for easier acceleration

6

OpenACC is a directives-
based programming approach
to parallel computing
designed for performance
and portability on CPUs
and GPUs for HPC.

main()
{
<serial code>
#pragma acc kernels
{
<parallel code>

}
}

Add Simple Compiler Directive

DIRECTIVE-BASED HPC PROGRAMMING
Who’s Using OpenACC

32
67

104
132

ISC15 ISC16 ISC17 ISC18

100,000 DOWNLOADS450 DOMAIN EXPERTS

2 OF LAST 9 FINALISTS5 OF 13 CAAR CODES3 OF TOP 5 HPC APPS

ACCELERATED APPS

GAUSSIAN 16

Using OpenACC allowed us to continue
development of our fundamental
algorithms and software capabilities
simultaneously with the GPU-related
work. In the end, we could use the
same code base for SMP, cluster/
network and GPU parallelism. PGI's
compilers were essential to the success
of our efforts.

Mike Frisch, Ph.D.
President and
CEO
Gaussian, Inc.

VASP

For VASP, OpenACC is the way
forward for GPU acceleration.
Performance is similar and in some
cases better than CUDA C, and
OpenACC dramatically decreases GPU
development and maintenance
efforts. We’re excited to collaborate
with NVIDIA and PGI as an early
adopter of CUDA Unified Memory.

Prof. Georg Kresse
Computational Materials Physics
University of Vienna

GTC

Using OpenACC our scientists
were able to achieve the
acceleration needed for
integrated fusion simulation with
a minimum investment of time
and effort in learning to program
GPUs.

Zhihong Lin
Professor and Principal Investigator
UC Irvine

Head
Shot

MAS

Adding OpenACC into MAS has given us
the ability to migrate medium-sized
simulations from a multi-node CPU
cluster to a single multi-GPU server.
The implementation yielded a portable
single-source code for both CPU and
GPU runs. Future work will add
OpenACC to the remaining model
features, enabling GPU-accelerated
realistic solar storm modeling.

Ronald M. Caplan
Computational Scientist
Predictive Science Inc.

https://devblogs.nvidia.com/solar-storm-modeling-gpu-openacc/

OpenACC development CYCLE
§ Analyze your code to determine most

likely places needing parallelization or
optimization.

§ Parallelize your code by starting with
the most time consuming parts and
check for correctness.

§ Optimize your code to improve
observed speed-up from
parallelization.

Analyze

ParallelizeOptimize

Analyze

Single SourceIncremental

OpenACC

§ Maintain existing

sequential code

§ Add annotations to

expose parallelism

§ After verifying

correctness,

annotate more of

the code

§ Rebuild the same

code on multiple

architectures

§ Compiler determines

how to parallelize for

the desired machine

§ Sequential code is

maintained

Low Learning Curve

§ OpenACC is meant to

be easy to use, and

easy to learn

§ Programmer remains

in familiar C, C++, or

Fortran

§ No reason to learn

low-level details of

the hardware.

OpenACC syntax

§ A pragma in C/C++ gives instructions to the compiler on how to compile the code.
Compilers that do not understand a particular pragma can freely ignore it.

§ A directive in Fortran is a specially formatted comment that likewise instructions the
compiler in it compilation of the code and can be freely ignored.

§ “acc” informs the compiler that what will come is an OpenACC directive
§ Directives are commands in OpenACC for altering our code.
§ Clauses are specifiers or additions to directives.

Syntax for using OpenACC directives in code

C/C++
#pragma acc directive clauses
<code>

Fortran
!$acc directive clauses
<code>

OpenACC parallel directive

§ The parallel directive instructs the compiler to
create parallel gangs on the accelerator

§ Gangs are independent groups of worker
threads on the accelerator

§ The code contained within a parallel directive
is executed redundantly by all parallel gangs

Explicit programming

<sequential code>

#pragma acc parallel
{
<sequential code>
}

Parallel Hardware

CPU

Profiling gpu code (PGPROF)

§ PGPROF presents far more
information when running on a GPU

§ We can view CPU Details, GPU
Details, a Timeline, and even do
Analysis of the performance

Using PGPROF to profile GPU code

Explicit memory management

§ Many parallel accelerators (such as
devices) have a separate memory pool
from the host

§ These separate memories can become
out-of-sync and contain completely
different data

§ Transferring between these two memories
can be a very time consuming process

Key problems

CPU
Memory device

Memory

Shared Cache

$ $ $ $ $ $

$ $ $ $ $ $

CPU

Shared Cache

$ $ $ $ $ $ $ $

device

IO Bus

Profiling gpu code (PGPROF)
Using PGPROF to profile GPU code

§ MemCpy(HtoD): This includes data
transfers from the Host to the Device
(CPU to GPU)

§ MemCpy(DtoH): These are data
transfers from the Device to the Host
(GPU to CPU)

§ Compute: These are our
computational functions. We can see
our calcNext and swap function

How do you compile an OpenACC code?

• PGI-OpenACC compiler
– PGI Community Edition, licensed but FREE to download
– Await the most latest version 18.10 (to be released this week)
– https://www.pgroup.com/products/community.htm
– pgcc -fast -ta=tesla:cc60 -Minfo=accel -o laplace laplace.c

• GNU-OpenACC compiler (developed by Mentor Graphics)
– Available online for download and use

https://www.pgroup.com/products/community.htm

Scientific Codes using OpenACC
in my research group

• Minisweep, a miniapp, represents (80-99%) of Denovo Sn code
– Nuclear Reactor Modeling code
– Code of interest to Oak Ridge National Lab

• Acceleration of Chemical Shift
– A code called within NAMD, VMD a 100 times
– Dept. of Chemistry

• Acceleration of MURaM (Max Planck University of Chicago
Radiative MHD)
– National Center for Atmospheric Research (NCAR)

NCAR CISL June 07, 2018 22

Nuclear reactor modeling proxy code : Minisweep

• Minisweep, a miniapp, represents (80-99%) of Denovo Sn code
• Denovo Sn (discrete ordinate), part of DOE INCITE project, is used

to model fusion reactor – CASL, ITER
– Impact: By running Minisweep faster, experiments with more

configurations can be performed directly impacting the
determination of accuracy of radiation shielding

• Poses a six dimensional problem
– 3D in space, 2D in angular particle direction and 1D in particle

energy
• The parallel pattern observed is wavefront-based

NCAR CISL June 07, 2018

To remedy this, the Krylov solver framework in Denovo that
is currently used in the inner one-group space-angle solves
has been expanded to include energy. Including energy in the
Krylov vectors enables the following benefits:

• The energy variable is decoupled allowing groups to be
solved independently.

• Krylov subspace iteration is more efficient and robust
than Gauss-Seidel iteration.

• Preconditioning a Krylov iteration is generally more ro-
bust and stable than accelerating Gauss-Seidel iterations.

Furthermore, including energy in the Krylov vector does not
invalidate any of the existing sweep mechanics that are already
implemented in Denovo, though it does make more parallelism
potentially available to the sweep algorithm.

For multigroup fixed-source problems in the form of Eq. (5),
application of a Krylov method requires the following two
steps:

1) A full energy-space-angle sweep of the right-hand side
source,

q = Tq̂ , (12)

where q̂ is an effective source that could be an external
source (qe), in the case of true fixed-source problems,
or it could be a fission source iterate when nested inside
power iteration.

2) A full energy-space-angle sweep each Krylov iteration to
calculate the action of the operator on the latest iterate,

yℓ = (I − TMS)vℓ , (13)

where vℓ is the Krylov vector in iteration ℓ. We note
that this vector is dimensioned vℓ ≡ {vℓ

g,c,n,l,m} where
g is the energy group, c is the cell index, n is the spatial
unknown index in the cell, and (l, m) are the spherical
harmonic moment indices.

For eigenvalue problems, we have implemented an Arnoldi
Krylov subspace solver using the Trilinos [7] Anasazi package
that can (1) take full advantage of the energy parallelism and
(2) be more efficient than power iteration. Arnoldi iteration
requires the eigenproblem to be written in standard form,

Ax = λx . (14)

Arnoldi iteration can implemented with either an energy-
dependent eigenvector,

Aφ = kφ , A = (I − TMS)−1TMF , (15)

or energy-independent eigenvector

AΓ = kΓ , A = fT (I − TMS)−1TMχ . (16)

In either case, the implementation of Arnoldi iteration requires
a matrix-vector multiply at each Krylov iteration of the form

yℓ = Avℓ . (17)

For the energy-dependent case, we have

zℓ = TMFvℓ , (mat-vec and sweep) (18)
(I − TMS)yℓ = zℓ . (fixed-source solve) (19)

Similarly, for the energy-independent eigenvector the steps are

zℓ = TMχvℓ , (mat-vec multiply and sweep) (20)
(I − TMS)yℓ = zℓ , (fixed-source solve) (21)

yℓ ← fT yℓ . (dot-product) (22)

Both methods require a fixed-source solve each iteration.
We consider both the energy-dependent and independent ap-
proaches because we are uncertain a priori which method will
be optimal for a given problem. The energy-dependent ap-
proach allows parallelization of the eigenvalue solve across en-
ergy at the expense of a much larger eigenvector. The energy-
independent approach allows energy-domain parallelization
over only the fixed-source solve, and the eigenvalue solve is
parallel only over space-angle. However, this decomposition
may be more efficient because the eigenvector is smaller,
especially when work is dominated by the inner multigroup
fixed-source solve.

IV. ACHIEVING PARALLEL SCALABILITY

A. The KBA Sweep Algorithm
The application of the operator T = DL−1 to a vector is a

highly sequential computation; for a regular (x, y, z) grid, the
resulting value along a given angular direction depends on the
results computed for the immediately previous values in the
x, y and z directions. The computational pattern is identical
to that of the well-known Gauss-Seidel and SOR linear solver
methods applied to certain structured grid problems and is
well-known to be difficult to parallelize [21].

Fig. 1. KBA Algorithm Block-Wavefront.

An effective method for parallelizing this computation is the
Koch-Baker-Alcouffe (KBA) algorithm [8]. For this algorithm,
the 3D grid is decomposed into blocks, which are in turn
arranged into block-wavefronts (see Fig. 1) numbered in
sequence from the corner of the grid. Blocks are assigned to
processors by assigning all blocks in the same vertical z stack
to the same processor. Processors can then independently pro-
cess each wavefront one at a time, with face communications
after each wavefront is complete.

This technique effectively parallelizes the computation;
however, parallel performance is stressed by two competing
factors. The early and late parts of the computation perform
at suboptimal efficiency, since these wavefronts have small

23

Minisweep code status

• Originally used CUDA and OpenMP 3.1 targeting Beacon and
TITAN at ORNL (one node of the Percival Cray XC40 KNL
system)

• Has been used for TITAN acceptance testing and now currently
being used for SummitDev and Summit acceptance testing at
ORNL

NCAR CISL June 07, 2018 24

Sweep Algorithm

NCAR CISL June 07, 2018 25

Parallelizing Sweep Algorithm: KBA

• Koch-Baker-Alcouffe (KBA)

• Algorithm developed in 1992 at Los Alamos

• Parallel sweep algorithm that overcomes

some of the dependencies in the algorithm

NCAR CISL June 07, 2018

To remedy this, the Krylov solver framework in Denovo that
is currently used in the inner one-group space-angle solves
has been expanded to include energy. Including energy in the
Krylov vectors enables the following benefits:

• The energy variable is decoupled allowing groups to be
solved independently.

• Krylov subspace iteration is more efficient and robust
than Gauss-Seidel iteration.

• Preconditioning a Krylov iteration is generally more ro-
bust and stable than accelerating Gauss-Seidel iterations.

Furthermore, including energy in the Krylov vector does not
invalidate any of the existing sweep mechanics that are already
implemented in Denovo, though it does make more parallelism
potentially available to the sweep algorithm.

For multigroup fixed-source problems in the form of Eq. (5),
application of a Krylov method requires the following two
steps:

1) A full energy-space-angle sweep of the right-hand side
source,

q = Tq̂ , (12)

where q̂ is an effective source that could be an external
source (qe), in the case of true fixed-source problems,
or it could be a fission source iterate when nested inside
power iteration.

2) A full energy-space-angle sweep each Krylov iteration to
calculate the action of the operator on the latest iterate,

yℓ = (I − TMS)vℓ , (13)

where vℓ is the Krylov vector in iteration ℓ. We note
that this vector is dimensioned vℓ ≡ {vℓ

g,c,n,l,m} where
g is the energy group, c is the cell index, n is the spatial
unknown index in the cell, and (l, m) are the spherical
harmonic moment indices.

For eigenvalue problems, we have implemented an Arnoldi
Krylov subspace solver using the Trilinos [7] Anasazi package
that can (1) take full advantage of the energy parallelism and
(2) be more efficient than power iteration. Arnoldi iteration
requires the eigenproblem to be written in standard form,

Ax = λx . (14)

Arnoldi iteration can implemented with either an energy-
dependent eigenvector,

Aφ = kφ , A = (I − TMS)−1TMF , (15)

or energy-independent eigenvector

AΓ = kΓ , A = fT (I − TMS)−1TMχ . (16)

In either case, the implementation of Arnoldi iteration requires
a matrix-vector multiply at each Krylov iteration of the form

yℓ = Avℓ . (17)

For the energy-dependent case, we have

zℓ = TMFvℓ , (mat-vec and sweep) (18)
(I − TMS)yℓ = zℓ . (fixed-source solve) (19)

Similarly, for the energy-independent eigenvector the steps are

zℓ = TMχvℓ , (mat-vec multiply and sweep) (20)
(I − TMS)yℓ = zℓ , (fixed-source solve) (21)

yℓ ← fT yℓ . (dot-product) (22)

Both methods require a fixed-source solve each iteration.
We consider both the energy-dependent and independent ap-
proaches because we are uncertain a priori which method will
be optimal for a given problem. The energy-dependent ap-
proach allows parallelization of the eigenvalue solve across en-
ergy at the expense of a much larger eigenvector. The energy-
independent approach allows energy-domain parallelization
over only the fixed-source solve, and the eigenvalue solve is
parallel only over space-angle. However, this decomposition
may be more efficient because the eigenvector is smaller,
especially when work is dominated by the inner multigroup
fixed-source solve.

IV. ACHIEVING PARALLEL SCALABILITY

A. The KBA Sweep Algorithm
The application of the operator T = DL−1 to a vector is a

highly sequential computation; for a regular (x, y, z) grid, the
resulting value along a given angular direction depends on the
results computed for the immediately previous values in the
x, y and z directions. The computational pattern is identical
to that of the well-known Gauss-Seidel and SOR linear solver
methods applied to certain structured grid problems and is
well-known to be difficult to parallelize [21].

Fig. 1. KBA Algorithm Block-Wavefront.

An effective method for parallelizing this computation is the
Koch-Baker-Alcouffe (KBA) algorithm [8]. For this algorithm,
the 3D grid is decomposed into blocks, which are in turn
arranged into block-wavefronts (see Fig. 1) numbered in
sequence from the corner of the grid. Blocks are assigned to
processors by assigning all blocks in the same vertical z stack
to the same processor. Processors can then independently pro-
cess each wavefront one at a time, with face communications
after each wavefront is complete.

This technique effectively parallelizes the computation;
however, parallel performance is stressed by two competing
factors. The early and late parts of the computation perform
at suboptimal efficiency, since these wavefronts have small

Image credit: High Performance Radiation

Transport Simulations: Preparing for TITAN

C. Baker, G. Davidson, T. M. Evans, S.

Hamilton, J. Jarrell and W. Joubert

ORNL, USA
26

Programming Challenges
• Parallelizing wavefront-based parallel code
–Manual loop restructuring
– Applying spatial decomposition
– Storing previous wavefronts
– Analyzing upstream dependencies

• Sweeping along 8 directions and avoiding race directions
• Need to address multiple layers of parallelism (minisweep 5-

levels)

27NCAR CISL June 07, 2018

Experimental Setup
• NVIDIA PSG Cluster
– CPU: Intel Xeon E5-2698 v3 (16-core)
– GPU: NVIDIA Tesla P100, Tesla V100, and Tesla K40 (4 GPUs per node)

• ORNL Titan
– CPU: AMD Opteron 6274 (16-core) & GPU: NVIDIA Tesla K20x

• Software
– PGI OpenACC Compiler 17.10
– OpenMP – GCC 6.2.0 (we used Intel 17.0 compiler too but GCC

performed better)

• Input size
– X/Y/Z = 64; number of energy groups = 64 and number of angles = 32

29

Minisweep Results

NCAR CISL June 07, 2018

PASC’18, July 2018, Congress Center Basel, Switzerland

Machine CPU GPU
NVIDIA PSG (V100) Intel Xeon E5-2698 v3 (16 cores) NVIDIA Tesla V100 (16GB HBM2)
NVIDIA PSG (P100) Intel Xeon E5-2698 v3 (16 cores) NVIDIA Tesla P100 (16GB HBM2)
NVIDIA PSG (K40) Intel Xeon E5-2690 v2 (10 cores) NVIDIA Tesla K40 (12GB GDDR5)

ORNL Titan AMD Opteron 6274 (16 cores) NVIDIA Tesla K20X (6GB GDDR5)
ORNL Summitdev IBM POWER8 (10 cores) NVIDIA Tesla P100 (16GB HBM2)
ORNL Percival Intel KNL 7230 (64 cores) N/A

Table 2: Speci�cations of the nodes in the systems we used to test di�erent con�gurations of Minisweep.

System Cores GF/s GF/s % peak
(SMs) peak GF/s

Titan(K20X) 14 1311 55.9 4.26
Summitdev(P100) 56 5312 244.8 4.61
Percival(Phi7230) 64 2662 124.9 4.69

Table 3: Comparative performance on several platforms.

We evaluate the e�ectiveness of our abstract wavefront paral-
lelismmodel by comparing the runtimes of our parallel implementa-
tions of Minisweep (described in Section 5) to the runtime of a serial
version of the code on multiple HPC systems. Table 2 describes the
hardware available on nodes of each system. Note that the NVIDIA
Professional Service Group (PSG) machines and the ORNL Titan
machine are existing state-of-the-art HPC systems, while ORNL
Summitdev is a development cluster representative of what hard-
ware will be present on nodes in ORNL’s next-gen supercomputer
Summit [27]. We also utilized the PSG cluster’s V100 node, which
houses NVIDIA’s next-generation GPU, which will be present on
nodes in Summit . We used PGI’s 17.10 compiler to compile our
OpenACC and OpenMP. We have also used GCC 6.3.0 for and ICC
17.0 for OpenMP codes. Compiling the code using Intel’s OpenMP
compiler was not successful and required code restructuring to take
advantage of SIMD in minisweep.
Our experimental con�guration is a representative example of

what a real run of Minisweep within the Denovo radiation transport
code looks like. Our problem dimensions are designed to be as large
as we can �t on a single GPU: ne = 64, na = 32, and nu = 4, with
nx ,n� ,nz = 32, on K20x/K40 and nx ,n� ,nz = 64 on P100/V100.

Figures 5 and 6 present the results when running di�erent imple-
mentations of Minisweep using this con�guration in the form of
speedups over the baseline serial implementation on existing HPC
systems. Note that the speedup results presented were obtained
by calculating the average of a series of runs for each implemen-
tation. There are a few notable results. First, our multicore CPU
GCC’s OpenMP (3.1) and OpenACC implementations yield favor-
able speedups. Note that GCC’s OpenMP performed better than
PGI’s OpenMP. As mentioned in Section 5.3, we have currently
parallelized the in-cell computations, as well as the spatial decom-
position utilizing the KBA parallel sweep algorithm to resolve data
dependencies, as discussed in Section 2.1. This implementation
boasts a larger speedup than our OpenMP GCC version, as well as
our CUDA con�guration when parallelized over the same problem
dimensions. Our OpenACC KBA con�gurations yields an addition
layer of parallelism across spatial dimensions and shows a much

larger speedup compared to con�gurations which only execute in-
cell computations in parallel. This leads us to conclude that there is
additional performance to be gained, albeit not trivial to implement.
It is also worth noting that our OpenACC implementation running
on NVIDIA’s next-generation Volta GPU boasts an 85.06x speedup
over serial code, which is larger than the 83.72x speedup over the
same serial implementation achieved by CUDA. This supports our
claim that our proposed extension to existing high-level program-
ming models is worthwhile, both from a performance standpoint, as
well as a programming productivity standpoint. Currently, without
major code modi�cation, this challenge cannot be overcome.

Figure 5: Minisweep’s speedups over serial using di�er-
ent runtime con�gurations. CUDA version is parallelized
along the same dimensions as the OpenACCGPU con�gura-
tion. The correspondingKBA con�gurations utilize theKBA
blockingmethod for additional parallelism across spatial di-
mensions.

Figure 6: Minisweep’s speedups over serial using di�erent
runtime con�gurations: ORNL’s next-gen Summitdev clus-
ter.
Absolute runtimes for GPU con�gurations utilizing the KBA

parallel sweep algorithm are presented in Figure 7. As shown, our

30

Summary
• Parallelized the in-grid cell computations (Wavefront)
• Performing multidirectional sweep
• Using Volta GPU, OpenACC implementation shows

85.06x over serial code Vs CUDA implementation of
83.72x over the same serial implementation

• Maintained a single code base for multicore and GPUs
• Run across nodes with multiple GPUs per node

31

• 14 months effort
• Papers published

in PASC 2018 and
Journal CPC 2018

Robert Searles, Sunita Chandrasekaran, Wayne Joubert, Oscar Hernandez. 2018. Abstractions and Directives for Adapting
Wavefront Algorithms to Future Architectures. In ACM proceedings of 5th Platform for Advanced Scientific Computing (PASC).
DOI: 10.1145/ 3218176.3218228
Robert Searles, Sunita Chandrasekaran, Wayne Joubert, Oscar Hernandez. 2018. Abstractions and Directives for Adapting
Wavefront Algorithms to Future Architectures. Journal of Computer Physics Communication (CPC).
DOI: 10.1016/j.cpc.2018.10.007

https://doi.org/10.1145/3218176.3218228

Scientific Codes using OpenACC
in my research group

• Minisweep, a miniapp, represents (80-99%) of Denovo Sn code
– Nuclear Reactor Modeling code
– Code of interest to Oak Ridge National Lab

• Acceleration of Chemical Shift
– A code called within NAMD, VMD a 100 times
– Dept. of Chemistry and other Chemistry packages

• Acceleration of MURaM (Max Planck University of Chicago
Radiative MHD)
– National Center for Atmospheric Research (NCAR)

NCAR CISL June 07, 2018 32

Project Motivation
● Nuclear Magnetic Resonance (NMR) is a vital tool in

the biocomputational space
● Chemical shift gives insight into the physical

structure of the protein
● Predicting chemical shift has important uses in

scientific areas such as drug discovery

Goal

● To enable execution of multiple chemical shift
predictions repeatedly

● To allow chemical shift predictions for larger scale
structures

33

Accelerating chemical shift problem

Serial Code Profile PPM_ONE
• Profiled code using PGPROF

– Without any optimizations
• Gave a baseline snapshot of the code

– Identified hotspots within the
code

– Identified functions that are
potential bottlenecks

• Obtained large overview without
needing to read thousands of lines of
code

34

Serial Code Profile (predict_bb_static_ann)

35

Main Function % Runtime

main() 100%

predict_bb_static_ann(void) 81.226%

predict_proton_static_new(voi
d)

16.276%

load(string) 1.921%

get_contact
35%

getselect
23%

gethbond
5%

getani
14%

getring
4%

Other
19%

Other Contains:
● File I/O
● PDB Structure

Initialization
● Data error

correction

Serial Optimization (getselect)
getselect originally
accounted for 25% of
the codes runtime. After
optimization, it takes
less than 1%.

36

// Pseudocode for getselect function

for(...) // Large loop
{

c2=pdb->getselect(":1-%@allheavy");
traj->get_contact(c1,c2,&result);

} // Pseudocode for getselect function

c2=pdb->getselect(":1-%@allheavy");
for(...) // Large loop
{

traj->get_contact(c1,c2,&result);
}

● Large outer-loop
covers all individual
get_contact calls

● Inner-loop still
iterates over all
atoms

● Now calculating 3
different contacts
simultaneously

● Writing contacts to
one large results
array to be used
later

37

#pragma acc parallel loop private(...) \
present(..., results[0:results_size]) copyin(...)
for(i=1;i<index_size-1;i++)
{

...

#pragma acc loop reduction(+:contact1, +:contact2, \
+:contact3) private(...)
for(j=0;j<c2_size;j++)
{

// Calculate contact1, contact2, contact3
}
...
results[((i-1)*3)+0]=contact1;
results[((i-1)*3)+1]=contact2;
results[((i-1)*3)+2]=contact3;

}

Accelerating get_contact

Acceleration of gethbond

38

#pragma acc parallel
{
#pragma acc loop gang
for(i=0;i<_hbond_size;i++)
{

#pragma acc loop vector
for(j=0;j<hbond_size;j++)
{

...
#pragma acc loop seq
for(k=0;k<nframe;k++)
{

...
}

}
}
} // end parallel region

Gang and vector directives
allow us to implement
multiple levels of loop
parallelism.

The innermost loop is
typically very small, and
would provide no benefit in
parallelizing, so we mark it
as “sequential”

Code Checklist

39

get_contact() 45.652%

getselect() 23.211 %

getani() 18.147%

gethbond() 5.718%

getring() 5.633%

Before After

get_contact 2505s 15s

gethbond 337s 1.24s

getani 29s 0.09s

getring 19s 0.09s

Selective functions - Using Large 5.8M
Atom Dataset on V100

Experimental Datasets

40

Structure A the first 100,000 atoms of the
Dynamin GTPase were isolated and written
to their own PDB file.
Structure B The next dataset tested was the
HIV-1 capsid assembly (CA) without
Hydrogens.
Structure C in Figure 2 is a 6.8 million atom
model of 14 turns of the Dynamin GTPase.

Experimental Setup
• NVIDIA PSG Cluster

–CPU: Intel Xeon E5-2698 v3 (16-core)

–GPU: NVIDIA Tesla P100, Tesla V100, and Tesla K40 (4
GPUs per node)

• Software

–PGI OpenACC Compiler 18.4

NCAR CISL June 07, 2018 41

Results

42NCAR CISL June 07, 2018

Very Small
(100K) Atoms

Medium
(2.1M) Atoms

Large
(6.8M) Atoms

Very Large
(11M) Atoms

Serial
(Unoptimized)

167.11s 3547.07
(1 hour)

7 hours
approx.

14 hours
approx.

Serial
(Optimized)

32s 2209.64s
(37 min)

2939s
(48 min)

9035s
(2.5 hours)

Multicore
(32 cores)

2.93s 109s 172s 427s

NVIDIA PASCAL
P100 GPU

1.72s 36s 69s 170s

NVIDIA VOLTA
V100 GPU

1.68s 29s 56s 134s

PPM_ONE Summary

• Performance of 67x on NVIDIA V100
compared to a single core

• Performance of 21x on multicore, dual
socket, 32 cores, using OpenACC

• Incorporate the GPU accelerated
PPM_One chemical shift prediction into
– NAMD (Nanoscale Molecular Dynamics)

enabling protein structure refinement
combined with other experimental techniques

– VMD (Visual Molecular Dynamics) enabling
scientists to perform structure validation

43

• 4 undergrad+2PhD students
• 12 months effort

• Submitting to Cell Biophysics
Journal

• Won the mid-Atlantic Research
poster Competition

Scientific Codes using OpenACC
in my research group

• Minisweep, a miniapp, represents (80-99%) of Denovo Sn code
– Nuclear Reactor Modeling code
– Code of interest to Oak Ridge National Lab

• Acceleration of Chemical Shift
– A code called within NAMD, VMD a 100 times
– Dept. of Chemistry and other Chemistry packages

• Acceleration of MURaM (Max Planck University of Chicago
Radiative MHD)
– National Center for Atmospheric Research (NCAR)

NCAR CISL June 07, 2018 44

• The primary solar model used for simulations
of the upper convection zone, photosphere
and corona.

• Jointly developed and used by HAO, the Max
Planck Institute for Solar System Research
(MPS) and the Lockheed Martin Solar and
Astrophysics Laboratory (LMSAL).

• MURaM has contributed substantially to our
understanding of solar phenomena.

• MURaM also plays a key role in interpreting
high resolution solar observations.

MURaM (Max Planck University of
Chicago Radiative MHD)

The Daniel K. Inouye Solar Telescope (DKIST), a ~$300M NSF investment, is
expected to advance the resolution of ground based observational solar physics by
an order of magnitude.

MURaM simulation of solar granulation

45

• Profile the original source code
– Profiler ranking of top functions consuming most wall time. We focused on

optimizing these functions, such as the “init” function.
• Factor in long-term solar science goals

– From the input of solar physicists, we identified radiative transport (RTS) as
the key routine to focus on to enable future science.

• Apply OpenACC programming model
– We added the OpenACC directives to move most of the intensive

computation to GPU. Accelerated mhd function. The function will be
further accelerated after the code is re-profiled.

• Optimize the CPU/GPU data movement
– Optimizations to avoid data transfer between CPU and GPU and keep most

of the computations on the GPU.
46

Roadmap

Function Names Runtime
%

Speedup
(V100

RTS (Radiative Transport) 23%

MHD
(Magnetohydrodynamics)

24% 13x

TVD (Total Variation
Diminishing)

34% 39x

EOS (Equation of state) 9% 10x

INT (Integrate Tcheck) 7% 2x

OTHER 3%

We have the option of
computing the RTS several times
per iteration. This will increase
accuracy and compute time.

The other functions are also
being accelerated, but will be
less impactful than RTS under full
load.

These results are gathered from NVIDIA PSG cluster.
Single V100 GPU
Intel Haswell, dual socket, 32 cores

47

Results

OPENACC Resources

Resources
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools
https://www.openacc.org/tools

FREE
Compilers

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://www.openacc.org/tools

https://event.on24.com/wcc/r/18
21570/D79EB142A48182C8FF360F
BCECE80D3E/155003?partnerref=
Sunita

• An on-going OpenACC
online course.

• 3 Modules
• 90 Minutes
• Recorded

Join OpenACC slack community

• https://www.openacc.org/community#slack
• Got technical questions?
• Want to promote any OpenACC
related activity? Let us know!

https://www.openacc.org/community

OpenACC Textbook

• Recently (November 2017) published

textbook

• Exercises from the textbook and Solution:

https://github.com/OpenACCUserGroup/o

penacc_concept_strategies_book

• Jupyter notebooks for exercises also will be

soon available

https://github.com/OpenACCUserGroup/openacc_concept_strategies_book

• Thank you to all my wonderful collaborators
NSF, ECP, NCAR, OpenACC, NVIDIA and Nemours

Computational Research and Programming Lab

