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Goals of Workshop
• Have basic understanding of

• Parallel programming
• MPI
• OpenMP

• Run a few examples of C/C++ code on Princeton HPC systems.
• Be aware of some of the common problems and pitfalls
• Be knowledgeable enough to learn more (advanced topics) on 

your own



Parallel Programming Analogy

Source: Wikapedia.org



Disadvantages/Issues
• No free lunch - can’t just “turn on” parallel
• Parallel programming requires work

• Code modification – always
• Algorithm modification – often
• New sneaky bugs – you bet

• Speedup limited by many factors



Realistic Expectations
• Ex. – Your program takes 20 days to run
• 95% can be parallelized
• 5% cannot (serial)
• What is the fastest this code can run?

• As many CPU’s as you want!

1 day!

Amdahl’s Law



• As you consider parallel programming understanding the 
underlying architecture is important

• Performance is affected by hardware configuration
• Memory or CPU architecture
• Numbers of cores/processor
• Network speed and architecture

Computer Architecture



MPI and OpenMP
• MPI – Designed for distributed memory 

• Multiple systems
• Send/receive messages

• OpenMP – Designed for shared memory
• Single system with multiple cores
• One thread/core sharing memory

• C, C++, and Fortran
• There are other options

• Interpreted languages with multithreading
• Python, R, matlab (have OpenMP & MPI underneath)

• CUDA, OpenACC (GPUs)
• Pthreads, Intel Cilk Plus (multithreading)
• OpenCL, Chapel, Co-array Fortran, Unified Parallel C (UPC) 

MemoryCPU

MemoryCPU

Message
Message

Memory
CPUCPU

CPU CPU

MPI

OpenMP



MPI
• Message Passing Interface
• Standard

• MPI-1 – Covered here
• MPI-2 – Added features
• MPI-3 – Even more cutting edge

• Distributed Memory
• But can work on shared

• Multiple implementations exist
• Open MPI
• MPICH
• Many commercial (Intel, HP, etc..)
• Difference should only be in the compilation not development

• C,C++, and Fortran



MPI Program - Basics

Include MPI Header File

Start of Program

(Non-interacting Code)

Initialize MPI

Run Parallel Code &
Pass Messages

End MPI Environment

(Non-interacting Code)

End of Program



MPI Program Basics
Include MPI Header File

Start of Program

(Non-interacting Code)

Initialize MPI

Run Parallel Code &
Pass Messages

End MPI Environment

(Non-interacting Code)

End of Program

#include <mpi.h>

int main (int argc, char *argv[])  
{

MPI_Init(&argc, &argv);  

.

.     // Run parallel code

.

MPI_Finalize(); // End MPI Envir

return 0;
}



Basic Environment

• Initializes MPI environment
• Must be called in every MPI program
• Must be first MPI call
• Can be used to pass command line arguments to all

• Terminates MPI environment
• Last MPI function call

MPI_Init(&argc, &argv) 

MPI_Finalize() 



Communicators & Rank
• MPI uses objects called communicators

• Defines which processes can talk
• Communicators have a size 

• MPI_COMM_WORLD
• Predefined as ALL of the MPI Processes
• Size = Nprocs

• Rank
• Integer process identifier 
• 0 ≤ Rank < Size 



Basic Environment Cont.

• Returns the rank of the calling MPI process
• Within the communicator, comm

• MPI_COMM_WORLD is set during Init(…)
• Other communicators can be created if needed

• Returns the total number of processes
• Within the communicator, comm

int my_rank, size;
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(comm, &rank) 

MPI_Comm_size(comm, &size) 



Hello World for MPI
#include <mpi.h>
#include <stdio.h>

int main (int argc, char *argv[]) {

int rank, size;

MPI_Init (&argc, &argv);  //initialize MPI library

MPI_Comm_size(MPI_COMM_WORLD, &size); //get number of processes
MPI_Comm_rank(MPI_COMM_WORLD, &rank); //get my process id

//do something
printf ("Hello World from rank %d\n", rank);
if (rank == 0) printf("MPI World size = %d processes\n", size);

MPI_Finalize(); //MPI cleanup

return 0;
}



Hello World Output
• 4 processes

• Code ran on each process independently
• MPI Processes have private variables
• Processes can be on completely different machines

Hello World from rank 3
Hello World from rank 0
MPI World size = 4 processes
Hello World from rank 2
Hello World from rank 1



How to Compile @ Princeton
• Intel (icc) and GNU (gcc) compilers

• Which to use?
• gcc free and available everywhere
• Often icc is faster
• This workshop uses icc.

• MPI compiler wrapper scripts are used
• Loaded through module command
• Different script for each language (C, C++, Fortan)



Compile & Run Code

[user@adroit4]$ module load openmpi/intel-17.0 intel/17.0

[user@adroit4]$ mpicc hello_world_mpi.c -o hello_world_mpi
[user@adroit4]$ mpirun –np 1 ./hello_world_mpi
Hello World from rank 0
MPI World size = 1 processes

Language Script Name
C mpicc
C++ mpic++, mpiCC, mpicxx
Fortran mpif77, mpif90

Use the --showme flag to 
see details of wrapper

Only needed once 
in a session.



Testing on head node

• For head/login node testing
• NOT for long running or big tests

• Small (<8 procs) and short (<2 min)

[user@adroit4]$ mpirun -np 4 ./hello_world_mpi
Hello World from rank 0
MPI World size = 4 processes
Hello World from rank 1
Hello World from rank 2
Hello World from rank 3

Start an mpi job
With this number of 
processes Run this executable

Compute NodesLogin Node(s)

Shared Storage

Scheduler



Submitting to the Scheduler
• Run on a compute node – essentially a different computer(s)
• Scheduler: SLURM

• Tell SLURM what resources you need and for how long
• Then tell it what to do
• srun = run an MPI job on a SLURM cluster

• It will call mpirun –np <n>  but with better performance

#!/bin/bash
#SBATCH --ntasks 4         #4 mpi tasks
#SBATCH -t 00:05:00        #Time in HH:MM:SS

#set up environment
module load openmpi/intel-17.0 intel/17.0

#Launch job with srun not mpirun/mpiexec!
srun ./hello_world_mpi

Make sure environment 
is the same as what you 
compiled with!



Lab 1: Run Hello World Program
• Workshop materials are here
http://tigress-web.princeton.edu/~augustin/bootcamp_2018.tgz

• ssh to YourNetId@adroit.princeton.edu

• Run on head node

[user@adroit4]$ wget http://tigress-web/~augustin/bootcamp_2018.tgz
[user@adroit4]$ tar –xvf bootcamp_2018.tgz

[user@adroit4]$cd bootcamp
[user@adroit4 bootcamp]$ module load openmpi/intel-17.0  intel/17.0
[user@adroit4 bootcamp]$ mpicc hello_world_mpi.c –o hello_world_mpi
[user@adroit4 bootcamp]$ mpirun –np 6 hello_world_mpi

[user@adroit4 bootcamp]$ sbatch hello_world_mpi.slurm
[user@adroit4 bootcamp]$ cat slurm-xxxxx.out

• Submit a job to the scheduler – look at output



Some Useful SLURM Commands

Command Purpose/Function
sbatch <filename> Submit the job in <filename> to slurm

scancel <slurm jobid> Cancel running or queued job

squeue –u <username> Show username’s jobs in the queue

salloc <resources req’d> Launch an interactive job on a compute node(s)



Point-to-Point Communication

• Send a message
• Returns only after buffer is free for reuse (Blocking)

• Receive a message
• Returns only when the data is available

• Blocking

• Two way communication
• Blocking

Process 0

Send
buf

Process 1

Recv

buf buf

{code}
{code}

{code}

MPI_Recv(&buf, count, datatype, source, tag, comm, &status)

MPI_Send(&buf, count, datatype, dest, tag, comm) 

MPI_SendRecv(...)



Point-to-Point Communication
• Blocking

• Only returns after completed
• Receive: data has arrived and ready to use
• Send: safe to reuse sent buffer

• Be aware of deadlocks
• Tip: Use when possible

• Non-Blocking
• Returns immediately

• Unsafe to modify buffers until operation is known to be complete
• Allows computation and communication to overlap
• Tip: Use only when needed



Deadlock

Process 0

Send
buf a

Process 1

Recv

{code}

Send

Recv

buf b

• Blocking calls can result in deadlock
• One process is waiting for a message that will never arrive
• Only option is to abort the interrupt/kill the code (ctrl-c)
• Might not always deadlock - depends on size of system buffer

Process 0

Send
buf a

Process 1

Recv

{code}

Recv

Send
buf b

{code}{code}

buf b

buf a
Dangerous



Collective Communication
• Communication between 2 or more processes

• 1-to-many, many-to-1, many-many

• All processes call the same function with same arguments
• Data sizes must match
• Routines are blocking (MPI-1)



Collective Communication (Bcast)

• Broadcasts a message from the root process to all other 
processes

• Useful when reading in input parameters from file

Root

Data

Process Process Process Process

MPI_Bcast(&buffer, count, datatype, root, comm)



Collective Communication (Scatter)

• Sends individual messages from the root process to all other 
processes

Root
Data

Root Process Process Process

Data
Data Data

MPI_Scatter(&sendbuf, sendcnt, sendtype, &recvbuf,        
recvcnt, recvtype, root, comm)



Collective Communication (Gather)

• Opposite of Scatter

Root
Data

Root Process Process Process

Data
Data Data

MPI_Gather(&sendbuf, sendcnt, sendtype, &recvbuf, 
recvcnt, recvtype, root, comm)



Collective Communication (Reduce)

• Applies reduction operation on data from all processes
• Puts result on root process

Root

Root Process Process Process

operator

Operator

MPI_SUM

MPI_MAX

MPI_MIN

MPI_PROD

MPI_Reduce(&sendbuf, &recvbuf, count, datatype,
mpi_operation, root, comm)



Collective Communication (Allreduce)

• Applies reduction operation on data from all processes
• Stores results on all processes

Process Process Process Process

Operator

MPI_SUM

MPI_MAX

MPI_MIN

MPI_PROD

Process Process Process Process

operator

MPI_Allreduce(&sendbuf, &recvbuf, count, 
datatype, mpi_operation, comm)



Collective Communication (Barrier)

• Process synchronization (blocking)
• All processes forced to wait for each other

• Use only where necessary
• Will reduce parallelism

MPI_Barrier(comm)

Process
0

Process
1

Process
2

Process
3

B
ar

rie
r

Process
0

Process
1

Process
2

Process
3



Useful MPI Routines
Routine Purpose/Function
MPI_Init Initialize MPI 
MPI_Finalize Clean up MPI
MPI_Comm_size Get size of MPI communicator
MPI_Comm_Rank Get rank of MPI Communicator
MPI_Reduce Min, Max, Sum, etc
MPI_Bcast Send message to everyone
MPI_Allreduce Reduce, but store result everywhere
MPI_Barrier Synchronize all tasks by blocking 
MPI_Send Send a message (blocking)
MPI_Recv Receive a message (blocking)
MPI_Isend Send a message (non-blocking)
MPI_Irecv Receive a message (non-blocking)
MPI_Wait Blocks until message is completed



(Some) MPI Data Types

MPI C Data Type
MPI_INT Singed int
MPI_FLOAT Float
MPI_DOUBLE Double
MPI_CHAR Signed char
MPI_SHORT Signed short int
MPI_LONG Signed long int



A note about MPI Errors
• Examples have not done any error handling
• Default: MPI_ERRORS_ARE_FATAL 
• This can be changed to MPI_ERRORS_RETURN

• Not recommended
• Program must handle ALL errors correctly

• Does have a purpose in fault tolerance
• Long running jobs should always checkpoint in case of errors.



Example

• Situation 1: 5 nodes, 20 cores per node = 100 processes
• 4 weeks of total run time broken down into 14, 48-hour runs
• 100 x 14 x 48 = 672,000 core-hours

• Situation 2: 3,000 nodes, 20 cores per node = 60,000 processes
• One 12 hour job
• 60,000 x 12 = 720,000 core-hours



Hardware Errors
• Unfortunately, hardware fails: nodes die, switches fail

• In case of a hardware or software error, the program aborts
• If you aren’t checkpointing ALL time for current job is wasted

• Situation 1: one 4,800 core-hours job lost
• Situation 2: all 720,000 core-hours lost

• If you are checkpointing all computation from last checkpoint is lost
• Situation 1: 1.7 core-hours per minute since last checkpoint 
• Situation 2: 1000 core-hours per minute since last checkpoint



Intro to Parallel Programming

Section 2: OpenMP
(and more…)



OpenMP
• What is it?

• Open Multi-Processing
• Completely independent from MPI
• Multi-threaded parallelism

• Standard since 1997
• Defined and endorsed by the major players

• Fortran, C, C++
• Requires compiler to support OpenMP

• Nearly all do

• For shared memory machines
• Limited by available memory
• Some compilers support GPUs



Preprocessor Directives
• Preprocessor directives tell the compiler what to do
• Always start with #
• You’ve already seen one:

• OpenMP directives tell the compiler to add machine code for 
parallel execution of the following block

• “Run this next set of instructions in parallel”

#include <stdio.h>

#pragma omp parallel



Some OpenMP Subroutines

• Returns max possible (generally set by OMP_NUM_THREADS)

• Returns number of threads in current team\\

• Returns thread id of calling thread
• Between 0 and omp_get_num_threads-1

int omp_get_thread_num()

int omp_get_num_threads()

int omp_get_max_threads()



Process vs. Thread
• MPI = Process, OpenMP = Thread
• Program starts with a single process
• Processes have their own (private) memory space
• A process can create one or more threads
• Threads created by a process share its memory space

• Read and write to same memory addresses
• Share same process ids and file descriptors

• Each thread has a unique instruction counter and stack pointer
• A thread can have private storage on the stack



OpenMP Fork-Join Model
• Automatically distributes work
• Fork-Join Model

F
O
R
K

J
O
I
N

A

B

C

D

Master A Master A

F
O
R
K

J
O
I
N

A

B

C

Master A

Team of threads Team of threads



OpenMP Hello World
#include <omp.h> //<-- necessary header file for OpenMP API
#include <stdio.h>

int main(int argc, char *argv[]){

printf("OpenMP running with %d threads\n", omp_get_max_threads());

#pragma omp parallel
{

//Code here will be executed by all threads
printf("Hello World from thread %d\n", omp_get_thread_num());

}

return 0;
}



Running OpenMP Hello World

[user@adroit4]$ module load intel
[user@adroit4]$ icc -qopenmp hello_world_omp.c -o hello_world_omp

[user@adroit4]$ export OMP_NUM_THREADS=4
[user@adroit4]$ ./hello_world_omp
OpenMP running with 4 threads
Hello World from thread 1
Hello World from thread 0
Hello World from thread 2
Hello World from thread 3

Compiler flag to enable OpenMP
(-fopenmp for gcc)

(-qopenmp-stubs for icc serial) Environment variable defining max threads 

• OMP_NUM_THREADS defines run time number of threads can be set in code 
as well using: omp_set_num_threads()

• OpenMP may try to use all available cpus if not set (On cluster–Always set it!)



Lab 2: OpenMP Hello World

[user@adroit4 bootcamp]$ module load intel
[user@adroit4 bootcamp]$ icc -qopenmp hello_world_omp.c -o hello_world_omp

[user@adroit4 bootcamp]$ export OMP_NUM_THREADS=4
[user@adroit4 bootcamp]$ ./hello_world_omp
OpenMP running with 4 threads
Hello World from thread 1
Hello World from thread 0
Hello World from thread 2
Hello World from thread 3



Private Variables 1
#include <omp.h>
#include <stdio.h>
int main() {
int i;
const int N = 1000;
int a = 50;
int b = 0;

#pragma omp parallel for default(shared)
for (i=0; i<N; i++) {
b = a + i;

}

printf("a=%d b=%d (expected a=50 b=1049)\n", a, b);
}

[user@adroit3]$ gcc -fopenmp omp_private_1.c -o omp_private_1
[user@adroit3]$ export OMP_NUM_THREADS=1
[user@adroit3]$ ./omp_private_1
a=50 b=1049 (expected a=50 b=1049)
[user@adroit3]$ export OMP_NUM_THREADS=4
[user@adroit3]$ ./omp_private_1
a=50 b=799 (expected a=50 b=1049)



Private Variables 2
#include <omp.h>
#include <stdio.h>
int main() {
int i;
const int N = 1000;
int a = 50;
int b = 0;

#pragma omp parallel for default(none) private(i) private(a) private(b)
for (i=0; i<N; i++) {
b = a + i;

}

printf("a=%d b=%d (expected a=50 b=1049)\n", a, b);
}

[user@adroit3]$ gcc -fopenmp omp_private_2.c -o omp_private_2
[user@adroit3]$ export OMP_NUM_THREADS=4
[user@adroit3]$ ./omp_private_2
a=50 b=0 (expected a=50 b=1049)



Private Variables 3
#include <omp.h>
#include <stdio.h>
int main() {
int i;
const int N = 1000;
int a = 50;
int b = 0;

#pragma omp parallel for default(none) private(i) private(a) lastprivate(b)
for (i=0; i<N; i++) {
b = a + i;

}

printf("a=%d b=%d (expected a=50 b=1049)\n", a, b);
}

[user@adroit3]$ gcc -fopenmp omp_private_3 -o omp_private_3
[user@adroit3]$ export OMP_NUM_THREADS=4
[user@adroit3]$ ./omp_private_3
a=50 b=4197725 (expected a=50 b=1049)



Private Variables 4
#include <omp.h>
#include <stdio.h>
int main() {
int i;
const int N = 1000;
int a = 50;
int b = 0;

#pragma omp parallel for default(none) private(i) firstprivate(a) lastprivate(b)
for (i=0; i<N; i++) {
b = a + i;

}

printf("a=%d b=%d (expected a=50 b=1049)\n", a, b);
}

[user@adroit3]$ gcc -fopenmp omp_private_4.c -o omp_private_4
[user@adroit3]$ export OMP_NUM_THREADS=4
[user@adroit3]$ ./omp_private_4
a=50 b=1049 (expected a=50 b=1049)



OpenMP Constructs
• Parallel region

• Thread creates team, and becomes master (id 0)
• All threads run code after
• Barrier at end of parallel section

#pragma omp parallel [clause ...] 
if (scalar_expression) 
private (list) 
shared (list) 
default (shared | none) 
firstprivate (list)
lastprivate (list)
reduction (operator: list) 
num_threads (integer)

structured_block (not a complete list)



OMP Parallel Clauses 1

• Only execute in parallel if true
• Otherwise serial

#pragma omp parallel if (scalar_expression) 

#pragma omp parallel private (list) 

• Data local to thread
• Values are not guaranteed to be defined on exit (even if defined before)
• No storage associated with original object

• Use firstprivate and/or lastprivate clause to override



OMP Parallel Clauses 2
#pragma omp parallel firstprivate (list) 

• Variables in list are private
• Initialized with the value the variable had before entering the construct

#pragma omp parallel for lastprivate (list) 

• Only in for loops
• Variables in list are private
• The thread that executes the sequentially last iteration updates the value of 

the variables in the list



OMP Parallel Clause 3
#pragma omp shared (list) 

• Data is accessible by all threads in team
• All threads access same address space 

• Improperly scoped variables are big source of OMP bugs
• Shared when should be private
• Race condition

• Tip: Safest is to use default(none) and declare by hand

#pragma omp default (shared | none) 



Shared and Private Variables
• Take home message:

• Be careful with the scope of your variables
• Results must be independent of thread count
• Test & debug thoroughly!

• Important note about compilers
• C (before C99) does not allow variables declared in for loop syntax

• Compiler will make loop variables private
• Still recommend explicit

#pragma omp parallel private(i)
for (i=0; i<N; i++) {
b = a + i;

}

#pragma omp parallel
for (int i=0; i<N; i++) {
b = a + i;

} Automatically private

C

C++



Caution: Race Condition

0

Thread A

Thread B

sum = 0

+1

1

Shared 
Variable

+1 +1

2

• When multiple threads 
simultaneously read/write 
shared variable

• Multiple OMP solutions
• Reduction
• Atomic 
• Critical

Should be 3!
#pragma omp parallel for private(i) shared(sum)
for (i=0; i<N; i++) {
sum += i;

}



Critical Section

0

Thread 0

Thread 1

sum = 0

+1

1

Shared 
Variable

+1

+1

2

Wait

3

• One solution: use critical
• Only one thread at a time 

can execute a critical section

• Downside?
• SLOOOOWWW
• Overhead & serialization

#pragma omp critical
{
sum += i;

}



OMP Atomic

0

Thread 0

Thread 1

sum = 0

+1

1

Shared 
Variable

+1

+1

2

Wait

3

• Atomic like “mini” critical
• Only one line 

• Certain limitations

• Hardware controlled
• Less overhead than critical

#pragma omp atomic
sum += i;



OMP Reduction
#pragma omp reduction (operator:variable) 

• Avoids race condition
• Reduction variable must be shared
• Makes variable private, then performs operator at end of loop
• Operator cannot be overloaded (c++)

• One of: +, *, -, / (and &, ^, |, &&, ||)
• OpenMP 3.1: added min and max for c/c++



Reduction Example
#include <omp.h>
#include <stdio.h>

int main() {

int i;
const int N = 1000;
int sum = 0;

#pragma omp parallel for private(i) reduction(+: sum)
for (i=0; i<N; i++) {
sum += i;

}

printf("reduction sum=%d (expected %d)\n", sum, ((N-1)*N)/2);

[user@adroit3]$ gcc -fopenmp omp_race.c -o omp_race.out
[user@adroit3]$ export OMP_NUM_THREADS=4
[user@adroit3]$ ./omp_race.out
reduction sum=499500 (expected 499500)



Relative Performance
• See example omp_race_time.c

• For 4 threads:
• Reduction is 100x faster than critical
• Reduction is 10x faster than atomic
• Reduction is faster than atomic with private sums (see example)

• Note: read the disclaimer at the top.

• Don’t reinvent the wheel, use Reduction!



Scheduling omp for

• How does a loop get split up?
• In MPI, we have to do it manually

• If you don’t tell it what to do, the compiler decides
• Usually compiler chooses “static” – chunks of N/p
#pragma omp parallel for default(shared) private(j)
for (j=0; j<N; j++) {

... // some work here
}

Thread 1 Thread 2 Thread 3 Thread 4

Unspecified schedule

𝑁𝑁
4

1
𝑁𝑁
2

3𝑁𝑁
4

Nj =



Static Scheduling
• You can tell the compiler what size chunks to take

• Keeps assigning chunks until done
• Chunk size that isn’t a multiple of the loop will result in threads 

with uneven numbers

#pragma omp parallel for default(shared) private(j) schedule(static,10)
for (j=0; j<N; j++) {

... // some work here
}

1 2 3 4

1j = 10 20 30 40

1 2 3 4

50 60 70 80

… 1 2 3 4 1 2 3

N
N-10

N-20
N-30

N-40
N-50

N-60
N-70



Problem with Static Scheduling
• What happens if loop iterations do not take the same amount of 

time?
• Load imbalance

Thread 1 Thread 2 Thread 3 Thread 4

Ti
m
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tio

n

Idle Threads



Dynamic Scheduling
• Chunks are assigned on the fly, as threads become available

• When a thread finishes one chunk, it is assigned another

• Caveat Emptor: higher overhead than static!

#pragma omp parallel for default(shared) private(j) schedule(dynamic,10)
for (j=0; j<N; j++) {

... // some work here
}

1 2 3 4 1 2 3 41 32 3 4 3 4



omp for Scheduling Recap

• Scheduling types
• Static

• Chucks of specified size assigned round-robin
• Dynamic

• Chunks of specified size are assigned when thread finishes previous chunk
• Guided

• Like dynamic, but chunks are exponentially decreasing
• Chunk will not be smaller than specified size

• Runtime
• Type and chunk determined at runtime via environment variables

#pragma omp parallel for schedule(type [,size])



Where not to use OpenMP

...
const int N = 1000;
int A[N], B[N], C[N];

... // arrays initialized etc.

#pragma omp parallel for shared(A,B,C) private(i)
for (i=1; i<(N-1); i++) {

B[i] = A[i-1] + 2*A[i] + A[i+1];
C[i] = B[i-1] + 2*B[i] + B[i+1];

}

...

What could go wrong here?

B[i-1] and B[i+1] are not 
guaranteed to be available/correct



OpenMP API
• API for library calls that perform useful functions

• We will only touch on a few 

• Must include “omp.h”
• Will not compile without openmp compiler support

• Intel has the -qopenmp-stubs option

#include <omp.h> //<-- necessary header file for OpenMP API
#include <stdio.h>

int main(int argc, char *argv[]){

printf("OpenMP running with %d threads\n", omp_get_max_threads());

#pragma omp parallel
{

//Code here will be executed by all threads
printf("Hello World from thread %d\n", omp_get_thread_num());

}

return 0;
}



OpenMP API

• Sets number of threads used in next parallel section
• Overrides OMP_NUM_THREADS environment variable
• Positive integer 

• Returns max possible (generally set by OMP_NUM_THREADS)

• Returns number of threads currently in team

• Returns thread id of calling thread
• Between 0 and omp_get_num_threads-1

• Returns number of seconds since some point
• Use in pairs time=(t2-t1)

void omp_set_num_threads(int num_threads)

double omp_get_wtime()

int omp_get_thread_num()

int omp_get_num_threads()

int omp_get_max_threads()



OpenMP Performance Tips
• Avoid serialization!
• Avoid using #pragma omp parallel for before each loop

• Can have significant overhead 
• Thread creation and scheduling is NOT free!!

• Try for broader parallelism
• One #pragma omp parallel, multiple #pragma omp for

• Always try to parallelize the outer most loop

• Use reduction whenever possible
• Minimize I/O
• Minimize critical

• Use atomic instead of critical where possible



Hybrid OpenMP & MPI
• Two-level Parallelization

• Mimics hardware layout of cluster
• Only place this really make sense

• MPI between nodes
• OpenMP within shared-memory nodes

• Why?
• Saves memory by not duplicating data
• Minimize interconnect communication by only having 1 MPI process 

per node

• Careful of MPI calls within OpenMP block
• Safest to do MPI calls outside (but not required)

• Obviously requires some thought!



Hybrid Programming
• In hybrid programming each process can have multiple threads 

executing simultaneously
• All threads within a process share all MPI objects

• Communicators, requests, etc.

• MPI defines 4 levels of thread safety
• MPI_THREAD_SINGLE

• One thread exists in program
• MPI_THREAD_FUNNELED

• Multithreaded but only the master thread can make MPI calls
• Master is one that calls MPI_Init_thread()

• MPI_THREAD_SERIALIZED
• Multithreaded, but only one thread can make MPI calls at a time

• MPI_THREAD_MULTIPLE
• Multithreaded and any thread can make MPI calls at any time

• Use MPI_Init_thread instead of MPI_Init if more than single thread
MPI_Init_thread(int required, int *provided) 



Hybrid Programming
• Safest (easiest) to use MPI_THREAD_FUNNLED
• Fits nicely with most OpenMP models

• Expensive loops parallelized with OpenMP
• Communication and MPI calls between loops

• Eliminates need for true “thread-safe” MPI
• Parallel scaling efficiency may be limited (Amdahl’s law) by 

MPI_THREAD_FUNNLED approach
• Moving to MPI_THREAD_MULTIPLE does come at a 

performance price (and programming challenge)



Strategies for Debugging
• Sometimes printf or cout during development can 

save headaches down the road
• Tip: Flush stdout (or use unbuffered)
• And write the MPI process rank 

• Stderr is already unbuffered

printf("Process %d has var1=%g var2=%d\n”, rank, var1, var2);
fflush(stdout);

std::cout.setf(std::ios::unitbuf);

fprintf(stderr, "Process %d has var1=%g var2=%d\n”, rank, var1, var2);

cerr<<"Process "<<rank<<" has var1="<<var1<<" var2="<<var2<<endl;



Debugging
• DDT

• Visual debugger
• Licensed Product
• Available on clusters

• http://www.princeton.edu/researchcomputing/faq/debugging-
with-ddt-on-the/

http://www.princeton.edu/researchcomputing/faq/debugging-with-ddt-on-the/


Profiling
• Many HPC codes operate far below peak
• Measuring the performance of your code

• Find the “hotspots”
• How much time is spent in each function
• Not always where you think it is
• Identify regions to optimize/parallelize

• Hardware Performance
• Vectorization, cache misses, branch misprediction, etc.

• Quick & dirty: Put time calls around loops
• Free & basic: gprof



Timing with MPI and OpenMP APIs
• MPI

• OpenMP

double t1 = MPI_Wtime();
//do something expensive...

double t2 = MPI_Wtime();

if(my_rank == final_rank) {
printf("Total runtime = %g s\n", (t2-t1));
}

double t1, t2;
t1=omp_get_wtime();
//do something expensive...
t2=omp_get_wtime();
printf("Total Runtime = %g\n", t2-t1);



Allinea MAP
• Allinea MAP

• Commercial profiler
• C, C++, Fortran
• Lightweight GUI

• Source code profiling
• Compute, I/O, Memory, MPI bottlenecks

http://www.princeton.edu/researchcomputing/faq/profiling-with-allinea-ma/



Intel VTune
• Intel VTune Amplifer XE

• Commercial Profiler
• Extraordinarily powerful 

(and complicated)
• Nice GUI 

• Shared memory only
• Serial
• OpenMP
• MPI on single node

• Excellent for hardware performance and threading
http://www.princeton.edu/researchcomputing/faq/profiling-with-intel-vtun/



Intel Trace Analyzer and Collector
• Intel Trace Analyzer and 

Collector 
• Creates timeline for every 

process

• Good for MPI scaling & 
bottlenecks

• Can have large overhead 
& big files

http://www.princeton.edu/researchcomputing/faq/using-intel-trace-analyze/



Scaling
• Measure the parallel performance of your code
• Know your code
• For time on national supercomputers (XSEDE) proof of scaling 

is required
• CPU hours are a precious commodity
• Prevents wasting resources
• Not a requirement at Princeton

• Algorithm and implementation specific

• Remember Amdahl’s Law



Scaling: Strong vs. Weak
• Strong Scaling

• Fixed problem size
• Measure how solution time decreases with more processors

1 Proc

3 Procs

T sec

T/3  sec

Size
N

Size
N



Weak Scaling
• Weak Scaling

• Fixed problem size per processor
• Measure by solution time remaining unchanged with larger problem 

(more processors)

1 Proc

T sec
Size

N

3 Procs

T sec

Size
3N



Exercise: Numerical Integration
• Calculate π numerically

• Integrate numerically with midpoint rule

N = number of intervals 
xj = a + j*h
h = (b - a)/N



Exercise: Numerical Integration
• Serial (non-parallel) program for computing π by numerical 

integration is in the bootcamp directory.
• As an exercise, try to make MPI and OpenMP versions. 
• See the full-day version of this workshop for more information:

[user@adroit4 bootcamp]$ wget http://tigress-
web/~icosden/Intro_Parallel_Computing/2018-Spring/lab_materials.tgz
[user@adroit4 bootcamp]$ tar –xvf lab_material.tgz



Upcoming Workshops
• Introduction to Parallel Programming with MPI and OpenMP

• Dr. Stephane Either, PPPL
• December 5, 2018

Possible Spring Workshops

Introduction to Debugging with the Allinea DDT Advanced 
Debugger

• Dr. Stephane Either, PPPL

• Introduction to Parallel Programming with MPI and OpenMP
• Dr. Ian Cosden, Princeton Research Computing
• 2 day workshop

https://putrain.learn.com/learncenter.asp?id=178409&sessionid=3-775FCB4A-E1FA-43C9-982A-91C13FFD4780&page=129
https://putrain.learn.com/learncenter.asp?id=178409&sessionid=3-775FCB4A-E1FA-43C9-982A-91C13FFD4780&page=129
https://putrain.learn.com/learncenter.asp?id=178409&sessionid=3-775FCB4A-E1FA-43C9-982A-91C13FFD4780&page=129


Resources
• Where to learn more?

• OpenMP
• YouTube videos “Introduction to OpenMP” by Tim Matteson
• http://www.openmp.org/resources
• https://computing.llnl.gov/tutorials/openMP/
• Online + Google (what can’t you learn?)

• MPI
• http://www.mpi-forum.org (location of the MPI standard)
• http://www.llnl.gov/computing/tutorials/mpi/
• http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
• http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html
• http://www-unix.mcs.anl.gov/mpi/tutorial/
• MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/)
• Open MPI (http://www.open-mpi.org/)
• Books:

• Using MPI “Portable Parallel Programming with the Message-Passing 
Interface” by William Gropp, Ewing Lusk, and Anthony Skjellum

• Using MPI-2  “Advanced Features of the Message-Passing Interface”

https://computing.llnl.gov/tutorials/openMP/
http://www.mpi-forum.org/
http://www.llnl.gov/computing/tutorials/mpi/
http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html
http://www-unix.mcs.anl.gov/mpi/tutorial/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.open-mpi.org/


Introduction to Parallel Programming
with MPI and OpenMP

Questions?
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