
Introduction to Parallel
Programming with MPI and

OpenMP

Charles Augustine
October 29, 2018

Goals of Workshop
• Have basic understanding of

• Parallel programming
• MPI
• OpenMP

• Run a few examples of C/C++ code on Princeton HPC systems.
• Be aware of some of the common problems and pitfalls
• Be knowledgeable enough to learn more (advanced topics) on

your own

Parallel Programming Analogy

Source: Wikapedia.org

Disadvantages/Issues
• No free lunch - can’t just “turn on” parallel
• Parallel programming requires work

• Code modification – always
• Algorithm modification – often
• New sneaky bugs – you bet

• Speedup limited by many factors

Realistic Expectations
• Ex. – Your program takes 20 days to run
• 95% can be parallelized
• 5% cannot (serial)
• What is the fastest this code can run?

• As many CPU’s as you want!

1 day!

Amdahl’s Law

• As you consider parallel programming understanding the
underlying architecture is important

• Performance is affected by hardware configuration
• Memory or CPU architecture
• Numbers of cores/processor
• Network speed and architecture

Computer Architecture

MPI and OpenMP
• MPI – Designed for distributed memory

• Multiple systems
• Send/receive messages

• OpenMP – Designed for shared memory
• Single system with multiple cores
• One thread/core sharing memory

• C, C++, and Fortran
• There are other options

• Interpreted languages with multithreading
• Python, R, matlab (have OpenMP & MPI underneath)

• CUDA, OpenACC (GPUs)
• Pthreads, Intel Cilk Plus (multithreading)
• OpenCL, Chapel, Co-array Fortran, Unified Parallel C (UPC)

MemoryCPU

MemoryCPU

Message
Message

Memory
CPUCPU

CPU CPU

MPI

OpenMP

MPI
• Message Passing Interface
• Standard

• MPI-1 – Covered here
• MPI-2 – Added features
• MPI-3 – Even more cutting edge

• Distributed Memory
• But can work on shared

• Multiple implementations exist
• Open MPI
• MPICH
• Many commercial (Intel, HP, etc..)
• Difference should only be in the compilation not development

• C,C++, and Fortran

MPI Program - Basics

Include MPI Header File

Start of Program

(Non-interacting Code)

Initialize MPI

Run Parallel Code &
Pass Messages

End MPI Environment

(Non-interacting Code)

End of Program

MPI Program Basics
Include MPI Header File

Start of Program

(Non-interacting Code)

Initialize MPI

Run Parallel Code &
Pass Messages

End MPI Environment

(Non-interacting Code)

End of Program

#include <mpi.h>

int main (int argc, char *argv[])
{

MPI_Init(&argc, &argv);

.

. // Run parallel code

.

MPI_Finalize(); // End MPI Envir

return 0;
}

Basic Environment

• Initializes MPI environment
• Must be called in every MPI program
• Must be first MPI call
• Can be used to pass command line arguments to all

• Terminates MPI environment
• Last MPI function call

MPI_Init(&argc, &argv)

MPI_Finalize()

Communicators & Rank
• MPI uses objects called communicators

• Defines which processes can talk
• Communicators have a size

• MPI_COMM_WORLD
• Predefined as ALL of the MPI Processes
• Size = Nprocs

• Rank
• Integer process identifier
• 0 ≤ Rank < Size

Basic Environment Cont.

• Returns the rank of the calling MPI process
• Within the communicator, comm

• MPI_COMM_WORLD is set during Init(…)
• Other communicators can be created if needed

• Returns the total number of processes
• Within the communicator, comm

int my_rank, size;
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(comm, &rank)

MPI_Comm_size(comm, &size)

Hello World for MPI
#include <mpi.h>
#include <stdio.h>

int main (int argc, char *argv[]) {

int rank, size;

MPI_Init (&argc, &argv); //initialize MPI library

MPI_Comm_size(MPI_COMM_WORLD, &size); //get number of processes
MPI_Comm_rank(MPI_COMM_WORLD, &rank); //get my process id

//do something
printf ("Hello World from rank %d\n", rank);
if (rank == 0) printf("MPI World size = %d processes\n", size);

MPI_Finalize(); //MPI cleanup

return 0;
}

Hello World Output
• 4 processes

• Code ran on each process independently
• MPI Processes have private variables
• Processes can be on completely different machines

Hello World from rank 3
Hello World from rank 0
MPI World size = 4 processes
Hello World from rank 2
Hello World from rank 1

How to Compile @ Princeton
• Intel (icc) and GNU (gcc) compilers

• Which to use?
• gcc free and available everywhere
• Often icc is faster
• This workshop uses icc.

• MPI compiler wrapper scripts are used
• Loaded through module command
• Different script for each language (C, C++, Fortan)

Compile & Run Code

[user@adroit4]$ module load openmpi/intel-17.0 intel/17.0

[user@adroit4]$ mpicc hello_world_mpi.c -o hello_world_mpi
[user@adroit4]$ mpirun –np 1 ./hello_world_mpi
Hello World from rank 0
MPI World size = 1 processes

Language Script Name
C mpicc
C++ mpic++, mpiCC, mpicxx
Fortran mpif77, mpif90

Use the --showme flag to
see details of wrapper

Only needed once
in a session.

Testing on head node

• For head/login node testing
• NOT for long running or big tests

• Small (<8 procs) and short (<2 min)

[user@adroit4]$ mpirun -np 4 ./hello_world_mpi
Hello World from rank 0
MPI World size = 4 processes
Hello World from rank 1
Hello World from rank 2
Hello World from rank 3

Start an mpi job
With this number of
processes Run this executable

Compute NodesLogin Node(s)

Shared Storage

Scheduler

Submitting to the Scheduler
• Run on a compute node – essentially a different computer(s)
• Scheduler: SLURM

• Tell SLURM what resources you need and for how long
• Then tell it what to do
• srun = run an MPI job on a SLURM cluster

• It will call mpirun –np <n> but with better performance

#!/bin/bash
#SBATCH --ntasks 4 #4 mpi tasks
#SBATCH -t 00:05:00 #Time in HH:MM:SS

#set up environment
module load openmpi/intel-17.0 intel/17.0

#Launch job with srun not mpirun/mpiexec!
srun ./hello_world_mpi

Make sure environment
is the same as what you
compiled with!

Lab 1: Run Hello World Program
• Workshop materials are here
http://tigress-web.princeton.edu/~augustin/bootcamp_2018.tgz

• ssh to YourNetId@adroit.princeton.edu

• Run on head node

[user@adroit4]$ wget http://tigress-web/~augustin/bootcamp_2018.tgz
[user@adroit4]$ tar –xvf bootcamp_2018.tgz

[user@adroit4]$cd bootcamp
[user@adroit4 bootcamp]$ module load openmpi/intel-17.0 intel/17.0
[user@adroit4 bootcamp]$ mpicc hello_world_mpi.c –o hello_world_mpi
[user@adroit4 bootcamp]$ mpirun –np 6 hello_world_mpi

[user@adroit4 bootcamp]$ sbatch hello_world_mpi.slurm
[user@adroit4 bootcamp]$ cat slurm-xxxxx.out

• Submit a job to the scheduler – look at output

Some Useful SLURM Commands

Command Purpose/Function
sbatch <filename> Submit the job in <filename> to slurm

scancel <slurm jobid> Cancel running or queued job

squeue –u <username> Show username’s jobs in the queue

salloc <resources req’d> Launch an interactive job on a compute node(s)

Point-to-Point Communication

• Send a message
• Returns only after buffer is free for reuse (Blocking)

• Receive a message
• Returns only when the data is available

• Blocking

• Two way communication
• Blocking

Process 0

Send
buf

Process 1

Recv

buf buf

{code}
{code}

{code}

MPI_Recv(&buf, count, datatype, source, tag, comm, &status)

MPI_Send(&buf, count, datatype, dest, tag, comm)

MPI_SendRecv(...)

Point-to-Point Communication
• Blocking

• Only returns after completed
• Receive: data has arrived and ready to use
• Send: safe to reuse sent buffer

• Be aware of deadlocks
• Tip: Use when possible

• Non-Blocking
• Returns immediately

• Unsafe to modify buffers until operation is known to be complete
• Allows computation and communication to overlap
• Tip: Use only when needed

Deadlock

Process 0

Send
buf a

Process 1

Recv

{code}

Send

Recv

buf b

• Blocking calls can result in deadlock
• One process is waiting for a message that will never arrive
• Only option is to abort the interrupt/kill the code (ctrl-c)
• Might not always deadlock - depends on size of system buffer

Process 0

Send
buf a

Process 1

Recv

{code}

Recv

Send
buf b

{code}{code}

buf b

buf a
Dangerous

Collective Communication
• Communication between 2 or more processes

• 1-to-many, many-to-1, many-many

• All processes call the same function with same arguments
• Data sizes must match
• Routines are blocking (MPI-1)

Collective Communication (Bcast)

• Broadcasts a message from the root process to all other
processes

• Useful when reading in input parameters from file

Root

Data

Process Process Process Process

MPI_Bcast(&buffer, count, datatype, root, comm)

Collective Communication (Scatter)

• Sends individual messages from the root process to all other
processes

Root
Data

Root Process Process Process

Data
Data Data

MPI_Scatter(&sendbuf, sendcnt, sendtype, &recvbuf,
recvcnt, recvtype, root, comm)

Collective Communication (Gather)

• Opposite of Scatter

Root
Data

Root Process Process Process

Data
Data Data

MPI_Gather(&sendbuf, sendcnt, sendtype, &recvbuf,
recvcnt, recvtype, root, comm)

Collective Communication (Reduce)

• Applies reduction operation on data from all processes
• Puts result on root process

Root

Root Process Process Process

operator

Operator

MPI_SUM

MPI_MAX

MPI_MIN

MPI_PROD

MPI_Reduce(&sendbuf, &recvbuf, count, datatype,
mpi_operation, root, comm)

Collective Communication (Allreduce)

• Applies reduction operation on data from all processes
• Stores results on all processes

Process Process Process Process

Operator

MPI_SUM

MPI_MAX

MPI_MIN

MPI_PROD

Process Process Process Process

operator

MPI_Allreduce(&sendbuf, &recvbuf, count,
datatype, mpi_operation, comm)

Collective Communication (Barrier)

• Process synchronization (blocking)
• All processes forced to wait for each other

• Use only where necessary
• Will reduce parallelism

MPI_Barrier(comm)

Process
0

Process
1

Process
2

Process
3

B
ar

rie
r

Process
0

Process
1

Process
2

Process
3

Useful MPI Routines
Routine Purpose/Function
MPI_Init Initialize MPI
MPI_Finalize Clean up MPI
MPI_Comm_size Get size of MPI communicator
MPI_Comm_Rank Get rank of MPI Communicator
MPI_Reduce Min, Max, Sum, etc
MPI_Bcast Send message to everyone
MPI_Allreduce Reduce, but store result everywhere
MPI_Barrier Synchronize all tasks by blocking
MPI_Send Send a message (blocking)
MPI_Recv Receive a message (blocking)
MPI_Isend Send a message (non-blocking)
MPI_Irecv Receive a message (non-blocking)
MPI_Wait Blocks until message is completed

(Some) MPI Data Types

MPI C Data Type
MPI_INT Singed int
MPI_FLOAT Float
MPI_DOUBLE Double
MPI_CHAR Signed char
MPI_SHORT Signed short int
MPI_LONG Signed long int

A note about MPI Errors
• Examples have not done any error handling
• Default: MPI_ERRORS_ARE_FATAL
• This can be changed to MPI_ERRORS_RETURN

• Not recommended
• Program must handle ALL errors correctly

• Does have a purpose in fault tolerance
• Long running jobs should always checkpoint in case of errors.

Example

• Situation 1: 5 nodes, 20 cores per node = 100 processes
• 4 weeks of total run time broken down into 14, 48-hour runs
• 100 x 14 x 48 = 672,000 core-hours

• Situation 2: 3,000 nodes, 20 cores per node = 60,000 processes
• One 12 hour job
• 60,000 x 12 = 720,000 core-hours

Hardware Errors
• Unfortunately, hardware fails: nodes die, switches fail

• In case of a hardware or software error, the program aborts
• If you aren’t checkpointing ALL time for current job is wasted

• Situation 1: one 4,800 core-hours job lost
• Situation 2: all 720,000 core-hours lost

• If you are checkpointing all computation from last checkpoint is lost
• Situation 1: 1.7 core-hours per minute since last checkpoint
• Situation 2: 1000 core-hours per minute since last checkpoint

Intro to Parallel Programming

Section 2: OpenMP
(and more…)

OpenMP
• What is it?

• Open Multi-Processing
• Completely independent from MPI
• Multi-threaded parallelism

• Standard since 1997
• Defined and endorsed by the major players

• Fortran, C, C++
• Requires compiler to support OpenMP

• Nearly all do

• For shared memory machines
• Limited by available memory
• Some compilers support GPUs

Preprocessor Directives
• Preprocessor directives tell the compiler what to do
• Always start with #
• You’ve already seen one:

• OpenMP directives tell the compiler to add machine code for
parallel execution of the following block

• “Run this next set of instructions in parallel”

#include <stdio.h>

#pragma omp parallel

Some OpenMP Subroutines

• Returns max possible (generally set by OMP_NUM_THREADS)

• Returns number of threads in current team\\

• Returns thread id of calling thread
• Between 0 and omp_get_num_threads-1

int omp_get_thread_num()

int omp_get_num_threads()

int omp_get_max_threads()

Process vs. Thread
• MPI = Process, OpenMP = Thread
• Program starts with a single process
• Processes have their own (private) memory space
• A process can create one or more threads
• Threads created by a process share its memory space

• Read and write to same memory addresses
• Share same process ids and file descriptors

• Each thread has a unique instruction counter and stack pointer
• A thread can have private storage on the stack

OpenMP Fork-Join Model
• Automatically distributes work
• Fork-Join Model

F
O
R
K

J
O
I
N

A

B

C

D

Master A Master A

F
O
R
K

J
O
I
N

A

B

C

Master A

Team of threads Team of threads

OpenMP Hello World
#include <omp.h> //<-- necessary header file for OpenMP API
#include <stdio.h>

int main(int argc, char *argv[]){

printf("OpenMP running with %d threads\n", omp_get_max_threads());

#pragma omp parallel
{

//Code here will be executed by all threads
printf("Hello World from thread %d\n", omp_get_thread_num());

}

return 0;
}

Running OpenMP Hello World

[user@adroit4]$ module load intel
[user@adroit4]$ icc -qopenmp hello_world_omp.c -o hello_world_omp

[user@adroit4]$ export OMP_NUM_THREADS=4
[user@adroit4]$./hello_world_omp
OpenMP running with 4 threads
Hello World from thread 1
Hello World from thread 0
Hello World from thread 2
Hello World from thread 3

Compiler flag to enable OpenMP
(-fopenmp for gcc)

(-qopenmp-stubs for icc serial) Environment variable defining max threads

• OMP_NUM_THREADS defines run time number of threads can be set in code
as well using: omp_set_num_threads()

• OpenMP may try to use all available cpus if not set (On cluster–Always set it!)

Lab 2: OpenMP Hello World

[user@adroit4 bootcamp]$ module load intel
[user@adroit4 bootcamp]$ icc -qopenmp hello_world_omp.c -o hello_world_omp

[user@adroit4 bootcamp]$ export OMP_NUM_THREADS=4
[user@adroit4 bootcamp]$./hello_world_omp
OpenMP running with 4 threads
Hello World from thread 1
Hello World from thread 0
Hello World from thread 2
Hello World from thread 3

Private Variables 1
#include <omp.h>
#include <stdio.h>
int main() {
int i;
const int N = 1000;
int a = 50;
int b = 0;

#pragma omp parallel for default(shared)
for (i=0; i<N; i++) {
b = a + i;

}

printf("a=%d b=%d (expected a=50 b=1049)\n", a, b);
}

[user@adroit3]$ gcc -fopenmp omp_private_1.c -o omp_private_1
[user@adroit3]$ export OMP_NUM_THREADS=1
[user@adroit3]$./omp_private_1
a=50 b=1049 (expected a=50 b=1049)
[user@adroit3]$ export OMP_NUM_THREADS=4
[user@adroit3]$./omp_private_1
a=50 b=799 (expected a=50 b=1049)

Private Variables 2
#include <omp.h>
#include <stdio.h>
int main() {
int i;
const int N = 1000;
int a = 50;
int b = 0;

#pragma omp parallel for default(none) private(i) private(a) private(b)
for (i=0; i<N; i++) {
b = a + i;

}

printf("a=%d b=%d (expected a=50 b=1049)\n", a, b);
}

[user@adroit3]$ gcc -fopenmp omp_private_2.c -o omp_private_2
[user@adroit3]$ export OMP_NUM_THREADS=4
[user@adroit3]$./omp_private_2
a=50 b=0 (expected a=50 b=1049)

Private Variables 3
#include <omp.h>
#include <stdio.h>
int main() {
int i;
const int N = 1000;
int a = 50;
int b = 0;

#pragma omp parallel for default(none) private(i) private(a) lastprivate(b)
for (i=0; i<N; i++) {
b = a + i;

}

printf("a=%d b=%d (expected a=50 b=1049)\n", a, b);
}

[user@adroit3]$ gcc -fopenmp omp_private_3 -o omp_private_3
[user@adroit3]$ export OMP_NUM_THREADS=4
[user@adroit3]$./omp_private_3
a=50 b=4197725 (expected a=50 b=1049)

Private Variables 4
#include <omp.h>
#include <stdio.h>
int main() {
int i;
const int N = 1000;
int a = 50;
int b = 0;

#pragma omp parallel for default(none) private(i) firstprivate(a) lastprivate(b)
for (i=0; i<N; i++) {
b = a + i;

}

printf("a=%d b=%d (expected a=50 b=1049)\n", a, b);
}

[user@adroit3]$ gcc -fopenmp omp_private_4.c -o omp_private_4
[user@adroit3]$ export OMP_NUM_THREADS=4
[user@adroit3]$./omp_private_4
a=50 b=1049 (expected a=50 b=1049)

OpenMP Constructs
• Parallel region

• Thread creates team, and becomes master (id 0)
• All threads run code after
• Barrier at end of parallel section

#pragma omp parallel [clause ...]
if (scalar_expression)
private (list)
shared (list)
default (shared | none)
firstprivate (list)
lastprivate (list)
reduction (operator: list)
num_threads (integer)

structured_block (not a complete list)

OMP Parallel Clauses 1

• Only execute in parallel if true
• Otherwise serial

#pragma omp parallel if (scalar_expression)

#pragma omp parallel private (list)

• Data local to thread
• Values are not guaranteed to be defined on exit (even if defined before)
• No storage associated with original object

• Use firstprivate and/or lastprivate clause to override

OMP Parallel Clauses 2
#pragma omp parallel firstprivate (list)

• Variables in list are private
• Initialized with the value the variable had before entering the construct

#pragma omp parallel for lastprivate (list)

• Only in for loops
• Variables in list are private
• The thread that executes the sequentially last iteration updates the value of

the variables in the list

OMP Parallel Clause 3
#pragma omp shared (list)

• Data is accessible by all threads in team
• All threads access same address space

• Improperly scoped variables are big source of OMP bugs
• Shared when should be private
• Race condition

• Tip: Safest is to use default(none) and declare by hand

#pragma omp default (shared | none)

Shared and Private Variables
• Take home message:

• Be careful with the scope of your variables
• Results must be independent of thread count
• Test & debug thoroughly!

• Important note about compilers
• C (before C99) does not allow variables declared in for loop syntax

• Compiler will make loop variables private
• Still recommend explicit

#pragma omp parallel private(i)
for (i=0; i<N; i++) {
b = a + i;

}

#pragma omp parallel
for (int i=0; i<N; i++) {
b = a + i;

} Automatically private

C

C++

Caution: Race Condition

0

Thread A

Thread B

sum = 0

+1

1

Shared
Variable

+1 +1

2

• When multiple threads
simultaneously read/write
shared variable

• Multiple OMP solutions
• Reduction
• Atomic
• Critical

Should be 3!
#pragma omp parallel for private(i) shared(sum)
for (i=0; i<N; i++) {
sum += i;

}

Critical Section

0

Thread 0

Thread 1

sum = 0

+1

1

Shared
Variable

+1

+1

2

Wait

3

• One solution: use critical
• Only one thread at a time

can execute a critical section

• Downside?
• SLOOOOWWW
• Overhead & serialization

#pragma omp critical
{
sum += i;

}

OMP Atomic

0

Thread 0

Thread 1

sum = 0

+1

1

Shared
Variable

+1

+1

2

Wait

3

• Atomic like “mini” critical
• Only one line

• Certain limitations

• Hardware controlled
• Less overhead than critical

#pragma omp atomic
sum += i;

OMP Reduction
#pragma omp reduction (operator:variable)

• Avoids race condition
• Reduction variable must be shared
• Makes variable private, then performs operator at end of loop
• Operator cannot be overloaded (c++)

• One of: +, *, -, / (and &, ^, |, &&, ||)
• OpenMP 3.1: added min and max for c/c++

Reduction Example
#include <omp.h>
#include <stdio.h>

int main() {

int i;
const int N = 1000;
int sum = 0;

#pragma omp parallel for private(i) reduction(+: sum)
for (i=0; i<N; i++) {
sum += i;

}

printf("reduction sum=%d (expected %d)\n", sum, ((N-1)*N)/2);

[user@adroit3]$ gcc -fopenmp omp_race.c -o omp_race.out
[user@adroit3]$ export OMP_NUM_THREADS=4
[user@adroit3]$./omp_race.out
reduction sum=499500 (expected 499500)

Relative Performance
• See example omp_race_time.c

• For 4 threads:
• Reduction is 100x faster than critical
• Reduction is 10x faster than atomic
• Reduction is faster than atomic with private sums (see example)

• Note: read the disclaimer at the top.

• Don’t reinvent the wheel, use Reduction!

Scheduling omp for

• How does a loop get split up?
• In MPI, we have to do it manually

• If you don’t tell it what to do, the compiler decides
• Usually compiler chooses “static” – chunks of N/p
#pragma omp parallel for default(shared) private(j)
for (j=0; j<N; j++) {

... // some work here
}

Thread 1 Thread 2 Thread 3 Thread 4

Unspecified schedule

𝑁𝑁
4

1
𝑁𝑁
2

3𝑁𝑁
4

Nj =

Static Scheduling
• You can tell the compiler what size chunks to take

• Keeps assigning chunks until done
• Chunk size that isn’t a multiple of the loop will result in threads

with uneven numbers

#pragma omp parallel for default(shared) private(j) schedule(static,10)
for (j=0; j<N; j++) {

... // some work here
}

1 2 3 4

1j = 10 20 30 40

1 2 3 4

50 60 70 80

… 1 2 3 4 1 2 3

N
N-10

N-20
N-30

N-40
N-50

N-60
N-70

Problem with Static Scheduling
• What happens if loop iterations do not take the same amount of

time?
• Load imbalance

Thread 1 Thread 2 Thread 3 Thread 4

Ti
m

e
pe

r i
te

ra
tio

n

Idle Threads

Dynamic Scheduling
• Chunks are assigned on the fly, as threads become available

• When a thread finishes one chunk, it is assigned another

• Caveat Emptor: higher overhead than static!

#pragma omp parallel for default(shared) private(j) schedule(dynamic,10)
for (j=0; j<N; j++) {

... // some work here
}

1 2 3 4 1 2 3 41 32 3 4 3 4

omp for Scheduling Recap

• Scheduling types
• Static

• Chucks of specified size assigned round-robin
• Dynamic

• Chunks of specified size are assigned when thread finishes previous chunk
• Guided

• Like dynamic, but chunks are exponentially decreasing
• Chunk will not be smaller than specified size

• Runtime
• Type and chunk determined at runtime via environment variables

#pragma omp parallel for schedule(type [,size])

Where not to use OpenMP

...
const int N = 1000;
int A[N], B[N], C[N];

... // arrays initialized etc.

#pragma omp parallel for shared(A,B,C) private(i)
for (i=1; i<(N-1); i++) {

B[i] = A[i-1] + 2*A[i] + A[i+1];
C[i] = B[i-1] + 2*B[i] + B[i+1];

}

...

What could go wrong here?

B[i-1] and B[i+1] are not
guaranteed to be available/correct

OpenMP API
• API for library calls that perform useful functions

• We will only touch on a few

• Must include “omp.h”
• Will not compile without openmp compiler support

• Intel has the -qopenmp-stubs option

#include <omp.h> //<-- necessary header file for OpenMP API
#include <stdio.h>

int main(int argc, char *argv[]){

printf("OpenMP running with %d threads\n", omp_get_max_threads());

#pragma omp parallel
{

//Code here will be executed by all threads
printf("Hello World from thread %d\n", omp_get_thread_num());

}

return 0;
}

OpenMP API

• Sets number of threads used in next parallel section
• Overrides OMP_NUM_THREADS environment variable
• Positive integer

• Returns max possible (generally set by OMP_NUM_THREADS)

• Returns number of threads currently in team

• Returns thread id of calling thread
• Between 0 and omp_get_num_threads-1

• Returns number of seconds since some point
• Use in pairs time=(t2-t1)

void omp_set_num_threads(int num_threads)

double omp_get_wtime()

int omp_get_thread_num()

int omp_get_num_threads()

int omp_get_max_threads()

OpenMP Performance Tips
• Avoid serialization!
• Avoid using #pragma omp parallel for before each loop

• Can have significant overhead
• Thread creation and scheduling is NOT free!!

• Try for broader parallelism
• One #pragma omp parallel, multiple #pragma omp for

• Always try to parallelize the outer most loop

• Use reduction whenever possible
• Minimize I/O
• Minimize critical

• Use atomic instead of critical where possible

Hybrid OpenMP & MPI
• Two-level Parallelization

• Mimics hardware layout of cluster
• Only place this really make sense

• MPI between nodes
• OpenMP within shared-memory nodes

• Why?
• Saves memory by not duplicating data
• Minimize interconnect communication by only having 1 MPI process

per node

• Careful of MPI calls within OpenMP block
• Safest to do MPI calls outside (but not required)

• Obviously requires some thought!

Hybrid Programming
• In hybrid programming each process can have multiple threads

executing simultaneously
• All threads within a process share all MPI objects

• Communicators, requests, etc.

• MPI defines 4 levels of thread safety
• MPI_THREAD_SINGLE

• One thread exists in program
• MPI_THREAD_FUNNELED

• Multithreaded but only the master thread can make MPI calls
• Master is one that calls MPI_Init_thread()

• MPI_THREAD_SERIALIZED
• Multithreaded, but only one thread can make MPI calls at a time

• MPI_THREAD_MULTIPLE
• Multithreaded and any thread can make MPI calls at any time

• Use MPI_Init_thread instead of MPI_Init if more than single thread
MPI_Init_thread(int required, int *provided)

Hybrid Programming
• Safest (easiest) to use MPI_THREAD_FUNNLED
• Fits nicely with most OpenMP models

• Expensive loops parallelized with OpenMP
• Communication and MPI calls between loops

• Eliminates need for true “thread-safe” MPI
• Parallel scaling efficiency may be limited (Amdahl’s law) by

MPI_THREAD_FUNNLED approach
• Moving to MPI_THREAD_MULTIPLE does come at a

performance price (and programming challenge)

Strategies for Debugging
• Sometimes printf or cout during development can

save headaches down the road
• Tip: Flush stdout (or use unbuffered)
• And write the MPI process rank

• Stderr is already unbuffered

printf("Process %d has var1=%g var2=%d\n”, rank, var1, var2);
fflush(stdout);

std::cout.setf(std::ios::unitbuf);

fprintf(stderr, "Process %d has var1=%g var2=%d\n”, rank, var1, var2);

cerr<<"Process "<<rank<<" has var1="<<var1<<" var2="<<var2<<endl;

Debugging
• DDT

• Visual debugger
• Licensed Product
• Available on clusters

• http://www.princeton.edu/researchcomputing/faq/debugging-
with-ddt-on-the/

http://www.princeton.edu/researchcomputing/faq/debugging-with-ddt-on-the/

Profiling
• Many HPC codes operate far below peak
• Measuring the performance of your code

• Find the “hotspots”
• How much time is spent in each function
• Not always where you think it is
• Identify regions to optimize/parallelize

• Hardware Performance
• Vectorization, cache misses, branch misprediction, etc.

• Quick & dirty: Put time calls around loops
• Free & basic: gprof

Timing with MPI and OpenMP APIs
• MPI

• OpenMP

double t1 = MPI_Wtime();
//do something expensive...

double t2 = MPI_Wtime();

if(my_rank == final_rank) {
printf("Total runtime = %g s\n", (t2-t1));
}

double t1, t2;
t1=omp_get_wtime();
//do something expensive...
t2=omp_get_wtime();
printf("Total Runtime = %g\n", t2-t1);

Allinea MAP
• Allinea MAP

• Commercial profiler
• C, C++, Fortran
• Lightweight GUI

• Source code profiling
• Compute, I/O, Memory, MPI bottlenecks

http://www.princeton.edu/researchcomputing/faq/profiling-with-allinea-ma/

Intel VTune
• Intel VTune Amplifer XE

• Commercial Profiler
• Extraordinarily powerful

(and complicated)
• Nice GUI

• Shared memory only
• Serial
• OpenMP
• MPI on single node

• Excellent for hardware performance and threading
http://www.princeton.edu/researchcomputing/faq/profiling-with-intel-vtun/

Intel Trace Analyzer and Collector
• Intel Trace Analyzer and

Collector
• Creates timeline for every

process

• Good for MPI scaling &
bottlenecks

• Can have large overhead
& big files

http://www.princeton.edu/researchcomputing/faq/using-intel-trace-analyze/

Scaling
• Measure the parallel performance of your code
• Know your code
• For time on national supercomputers (XSEDE) proof of scaling

is required
• CPU hours are a precious commodity
• Prevents wasting resources
• Not a requirement at Princeton

• Algorithm and implementation specific

• Remember Amdahl’s Law

Scaling: Strong vs. Weak
• Strong Scaling

• Fixed problem size
• Measure how solution time decreases with more processors

1 Proc

3 Procs

T sec

T/3 sec

Size
N

Size
N

Weak Scaling
• Weak Scaling

• Fixed problem size per processor
• Measure by solution time remaining unchanged with larger problem

(more processors)

1 Proc

T sec
Size

N

3 Procs

T sec

Size
3N

Exercise: Numerical Integration
• Calculate π numerically

• Integrate numerically with midpoint rule

N = number of intervals
xj = a + j*h
h = (b - a)/N

Exercise: Numerical Integration
• Serial (non-parallel) program for computing π by numerical

integration is in the bootcamp directory.
• As an exercise, try to make MPI and OpenMP versions.
• See the full-day version of this workshop for more information:

[user@adroit4 bootcamp]$ wget http://tigress-
web/~icosden/Intro_Parallel_Computing/2018-Spring/lab_materials.tgz
[user@adroit4 bootcamp]$ tar –xvf lab_material.tgz

Upcoming Workshops
• Introduction to Parallel Programming with MPI and OpenMP

• Dr. Stephane Either, PPPL
• December 5, 2018

Possible Spring Workshops

Introduction to Debugging with the Allinea DDT Advanced
Debugger

• Dr. Stephane Either, PPPL

• Introduction to Parallel Programming with MPI and OpenMP
• Dr. Ian Cosden, Princeton Research Computing
• 2 day workshop

https://putrain.learn.com/learncenter.asp?id=178409&sessionid=3-775FCB4A-E1FA-43C9-982A-91C13FFD4780&page=129
https://putrain.learn.com/learncenter.asp?id=178409&sessionid=3-775FCB4A-E1FA-43C9-982A-91C13FFD4780&page=129
https://putrain.learn.com/learncenter.asp?id=178409&sessionid=3-775FCB4A-E1FA-43C9-982A-91C13FFD4780&page=129

Resources
• Where to learn more?

• OpenMP
• YouTube videos “Introduction to OpenMP” by Tim Matteson
• http://www.openmp.org/resources
• https://computing.llnl.gov/tutorials/openMP/
• Online + Google (what can’t you learn?)

• MPI
• http://www.mpi-forum.org (location of the MPI standard)
• http://www.llnl.gov/computing/tutorials/mpi/
• http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
• http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html
• http://www-unix.mcs.anl.gov/mpi/tutorial/
• MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/)
• Open MPI (http://www.open-mpi.org/)
• Books:

• Using MPI “Portable Parallel Programming with the Message-Passing
Interface” by William Gropp, Ewing Lusk, and Anthony Skjellum

• Using MPI-2 “Advanced Features of the Message-Passing Interface”

https://computing.llnl.gov/tutorials/openMP/
http://www.mpi-forum.org/
http://www.llnl.gov/computing/tutorials/mpi/
http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html
http://www-unix.mcs.anl.gov/mpi/tutorial/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.open-mpi.org/

Introduction to Parallel Programming
with MPI and OpenMP

Questions?

	Introduction to Parallel Programming with MPI and OpenMP
	Goals of Workshop
	Parallel Programming Analogy
	Disadvantages/Issues
	Realistic Expectations
	Computer Architecture
	MPI and OpenMP
	MPI
	MPI Program - Basics
	MPI Program Basics
	Basic Environment
	Communicators & Rank
	Basic Environment Cont.
	Hello World for MPI
	Hello World Output
	How to Compile @ Princeton
	Compile & Run Code
	Testing on head node
	Submitting to the Scheduler
	Lab 1: Run Hello World Program
	Some Useful SLURM Commands
	Point-to-Point Communication
	Point-to-Point Communication
	Deadlock
	Collective Communication
	Collective Communication (Bcast)
	Collective Communication (Scatter)
	Collective Communication (Gather)
	Collective Communication (Reduce)
	Collective Communication (Allreduce)
	Collective Communication (Barrier)
	Useful MPI Routines
	(Some) MPI Data Types
	A note about MPI Errors
	Example
	Hardware Errors
	Intro to Parallel Programming
	OpenMP
	Preprocessor Directives
	Some OpenMP Subroutines
	Process vs. Thread
	OpenMP Fork-Join Model
	OpenMP Hello World
	Running OpenMP Hello World
	Lab 2: OpenMP Hello World
	Private Variables 1
	Private Variables 2
	Private Variables 3
	Private Variables 4
	OpenMP Constructs
	OMP Parallel Clauses 1
	OMP Parallel Clauses 2
	OMP Parallel Clause 3
	Shared and Private Variables
	Caution: Race Condition
	Critical Section
	OMP Atomic
	OMP Reduction
	Reduction Example
	Relative Performance
	Scheduling omp for
	Static Scheduling
	Problem with Static Scheduling
	Dynamic Scheduling
	omp for Scheduling Recap
	Where not to use OpenMP
	OpenMP API
	OpenMP API
	OpenMP Performance Tips
	Hybrid OpenMP & MPI
	Hybrid Programming
	Hybrid Programming
	Strategies for Debugging
	Debugging
	Profiling
	Timing with MPI and OpenMP APIs
	Allinea MAP
	Intel VTune
	Intel Trace Analyzer and Collector
	Scaling
	Scaling: Strong vs. Weak
	Weak Scaling
	Exercise: Numerical Integration
	Exercise: Numerical Integration
	Upcoming Workshops
	Resources
	Introduction to Parallel Programming�with MPI and OpenMP

