
GETTING STARTED WITH
PERFORMANCE OPTIMIZATION

AND TUNING

Bei Wang, Ph.D.
HPC Software Engineer

Research Computing, Princeton University

Princeton Research Computing Bootcamp
Oct 31, 2018

About Me

• Bei Wang, Ph.D., HPC Software Engineer at Research
Computing

• 7 years at Princeton University Working on Research
and Development in Parallel Computing Applications
(plasma physics and fluid dynamics domains)

• Co-PI of Intel Parallel Computing Center (IPCC) at
Princeton

• Office: 334 Lewis Library (TW), 111 Peyton Hall (MTF)
• Email: beiwang@princeton.edu

Outline

• An introduction to the idea of performance analysis
• Methodology
• Workflow
• Measurement tools
• Hands-on

• Focused primarily on the HPC recourses at Princeton
• Hardware: Intel CPU
• Tools: Intel performance tuning tools
• Scientific application codes written with C/C++ and

Fortran languages
• Most principles apply universally

What is Performance Tuning?

• The process of improving the efficiency of an
application to better utilize a given hardware resource
• Requires some understanding about the performance

features of the given hardware
• Identifying bottlenecks, determining efficiency and

eliminating the bottlenecks if possible
• Incrementally complete tuning until the performance

requirements are satisfies

“The Free Lunch is Over”

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

The Free Lunch

Vectorization

Parallelization

APPLICATION

SYSTEM

(hardware and system
software)

MICRO-
ARCHITECTURE

Instructions
Cache/Memory
SIMD
Branch prediction

“Optimizing HPC Applications with Intel Cluster Tools”, Book, Alexander Supalov, Andrey Semin, Michael
Klemm, Chris Dahnken, 2014

Optimization

Tuning

Performance Analysis Methodology:

A top-down approach

Hard disk
Network interface
Memory
BIOS
Operation system

Algorithm
Data structure
Parallelization

Performance Analysis Workflow:

Prepare
• Create a benchmark
• Choose a workload which is

measurable, representative, static and reproducible
• Choose a performance metric which is

quantifiable

• Document
• Code generation: compiler version, flags etc
E.g.: in Makefile

• Basic variants: thread count, affinity, working set size

Prepare

Measure

AnalyzeHypothesize

Modify

Performance Analysis Workflow:

Measure
• Time program run time

• linux commands: time, prof stat
• Get an idea of overall run time

• Put timer around loops/functions
• gettimeofday, MPI_Wtime, omp_get_wtime
• Works for small code base to identify hotspots

• Use profilers – recommended
• What to collect?
• Timing, hardware counter, trip counts, call stack etc

• How to collect?
• Sampling-based
• Records system state at periodic intervals
• Not intrusive-low overhead

• Instrumenting-based
• Add instructions in the source code to collect detailed information for interested events
• Intrusive-high overhead for frequent events

• Tracing-based
• Records all operations
• Intrusive-high overhead

Prepare

Measure

AnalyzeHypothesize

Modify

Performance Analysis Workflow:

Hypothesize
• Why is my code slow?
• CPU bound
• Memory bound
• I/O bound
• Network bound
• Unbalanced Workload (Parallel)

• What is the best I can expect?
• CPU
• Memory/Cache
• I/O
• Network
• Parallel Scaling

Prepare

Measure

AnalyzeHypothesize

Modify

Performance Analysis Workflow:

Modify
• Change only one thing at a time
• Consider the ease (difficulty) of

implementation
• Keep track of all changes
• Apply regression test to ensure correctness

after each change

Prepare

Measure

AnalyzeHypothesize

Modify

Words to Remember:
Fast computing of wrong result is completely irrelevant!

When to Stop? Amdahl's law

40

10

10

10

20

10

10

2

10

2x speed up in hotspot
1.5x speed up overall

20x speed up in hotspot
2.73x speed up overall

hotspot

https://en.wikipedia.org/wiki/Amdahl%27s_law

Performance Tuning Tradeoff

Portability
Readability
Maintainability
Reliability
Time

Performance

Using Profilers

• Include debug symbols in executable
• -g
• Ability to trace performance back to source code

• Use release-build optimization flags
• E.g., -O3, -xhost (Intel), -ipo (Intel)
• Don’t waste time optimizing code the compiler can do

automatically!
• Keep useful debugging information
• E.g., -debug inline-debug-info (Intel) or -debug full (Intel)
• Sometimes the compiler will optimize out useful regions

• Include required profiling flags during compiling
• E.g., -pg (Gprof)
• Needed by instrumentation-based profiling

Popular Tools

• Many free and commercial products, for example
• Linux Perf: Sampling profiler with support of hardware events on several

architectures
• Linux Oprofile: Sampling profiler for Linux that counts cache misses, stalls,

memory fetches, etc
• GNU Gprof: Several tools with combined sampling and call-graph profiling
• Valgrind (Callgrind): System for debugging and profiling; supports tools to

either detect memory management and threading bugs, or profile
performance

• ARM MAP: Performance profiler. Shows I/O, communication, floating point
operation usage and memory access costs

• Intel VTune Amplifier XE: Tool for serial and threaded performance
analysis. Hotspot, call tree and threading analysis works on both Intel and
AMD x86 processors.

• Intel Advisor: Tool for vectorization
• …

https://en.wikipedia.org/wiki/List_of_performance_analysis_tools

Tools at Princeton

• Research Computing at Princeton supports a
number of licensed performance tuning tools
• Profiling
•ARM MAP
• Intel VTune

• Tracing
• Intel Trace Analyzer and Collector

• Vectorization
• Intel Advisor

• Debugging
•ARM DDT
• Intel Inspector

Intel Tools at Princeton

• Application Performance Snapshot
• High level tool for an overview of performance

mpirun -n <N> aps ${EXE} ${ARGS}
• Intel VTune Amplifier

• Node level counter based performance profiler
mpirun –n 1 amplxe-cl –c ${COLL} -finalization-mode=deferred -- ${EXE} ${ARGS}: -n

<N-1> ${EXE} ${ARGS}
• Recommended Collections:

advanced-hotspots, general-exploration, memory-access, hpc-performance
• Finalize on headnode
amplxe-cl -finalize -r ${RESULT_DIR} -search-dir ${PATH_TO_OBJS_AND_EXE} -

source-search-dir ${PATH_TO_SOURCE}
• Intel Advisor

• Node level vectorization and threading information, and roofline
mpirun -n 1 advixe-cl -c survey -project-dir -- ${EXE} ${ARGS}: -n <N-1> ${EXE} ${ARGS}
mpirun -n 1 advixe-cl -c tripcounts -flop -project-dir -- ${EXE} ${ARGS}: -n <N-1> ${EXE}

${ARGS}
• Intel Trace Analyzer and Collector

• At scale MPI performance analyzer

Workflow of Tool Selection

General application
profiling

Inter-node
performance

On-node performance

Application Performance Snapshot (APS)

• A quick view into a shared memory or MPI application’s
use of available hardware (CPU, FPU and Memory)

• Identify basic performance optimization opportunities and
the next step for analysis

• Extremely easy to use
• Results shown as HTML format
• Scales to large jobs
• Multiple methods to obtain:
• Free download from APS website:

https://software.intel.com/sites/products/snapshots/a
pplication-snapshot/

• Part of Intel Parallel Studio XE or Intel VTune Amplifier

https://software.intel.com/sites/products/snapshots/application-snapshot/

Main bottleneck
identified and
next steps
suggested

Memory Stalls
measurement
with breakdown
by cache and
DRAM

Excellent
vectorization

Typical APS Report (HTML Based)

Run the following command to collect the data and complete the analysis:
mpirun –n <N> aps ${EXE} ${ARGS}
aps -report=${PATH_TO_APS_RESULT_DIR}

Rank to Rank Communication Report

Run the following command to get the report:
aps-report -g ${PATH_TO_APS_RESULT_DIR}

Intel VTune Amplifier

• Accurate data
• Hotspot
• Processor microarchitecture
• Memory access
• Threading
• I/O

• Flexible
• Linux, Windows and Mac OS analysis GUI
• Link data to source code and assembly
• Easy set-up, no special compiles

• Shared memory only
• Serial
• OpenMP
• MPI on a single node

A Rich Set of Predefined Analysis Types

• Basic analysis:
• hotspots: what functions use most time?
• concurrency: identify potential parallelization

opportunities/issues
• Advanced analysis
• advanced-hotspots: extend the hotspots with call stacks,

statistical call counts, CPI metric etc
• general-exploration: hardware-level performance data
• hpc-performance: overview of CPU, memory and FPU

utilization
• memory-access: identify memory-related issues
• …

Hotspots (Summary View)

Use hotspots analysis to find where your program is spending the most time,
ensuring your optimizations have a bigger impact.

Run the following command to collect the data (remotely) and complete the analysis (locally):
amplxe-cl –collect hotspots –knob analyze-openmp=true -finalization-mode=deferred -- $<EXE> $<ARGS>
amplxe-cl –finalize –r $<RESULT_DIR> –search-dir $<OBJS_DIR> -source-search-dir $<SOURCE_DIR>

Hotspots (Bottom-up View)

Use bottom-up view to identify the most time-consuming functions and
analyze their call flow from a function to its parent functions

Loops

Functions

Filter by process, thread & other controls Filter by function or loop

Zoom-in

Double Click Function to See Source Line
View source/asm or both CPU time

Select source to
highlight asm

Vectorization 101

Modern computers have vector registers and SIMD (Single Instruction
Multiple Data) instructions. This allows one CPU to do multiple
calculations at once.

17 53 37 4

63 -9 42 81

80 44 79 85

17

63

80

53

-9

44

37

42

79

4

81

85

The size of the vector register varies by the architecture. Skylake Server
architecture (at Tigercpu of Princeton) has a vector length of 512 bits (8
doubles or 16 floats)

SP SP SP SP SP SP SP SP SP SP SP SP SP SP SP SP

DP DP DP DP DP DP DP DP

Single Precision (16)

Double Precision (8)

“Expertly tune your application” Intel webinar, Carlos Rosales-Fernandez, 2018

Intel Advisor

• Vectorization Advisor
• Survey: find the vectorization

information for loops and provide
suggestions for improvement

• Trip Counts: generate a Roofline
Chart

• Dependencies: determine if it is
safe to force vectorization

• Memory Access Patterns (MAP):
see how you access the data

• Threading Advisor
• Suitability: predict how well your

proposed threading model will
scale

Survey
What impedes
performance

How much time
is spending?

Are you using the
latest instruction set?

Are loops
vectorized?

Vectorization
efficiency

Run the following command to collect the data (remotely):
advixe-cl –c survey -project-dir $<PROJ_DIR> -no-auto-finalize -- $<EXE> $<ARGS>

Trip Counts

Run the following command to collect the data (remotely):
advixe-cl –c tripcounts -flop -project-dir $<PROJ_DIR> -no-auto-finalize -- $<EXE> $<ARGS>
Note: it is important to use the same project directory as the survey analysis

This loop’s scalar count is ~248

This loop is called 50 million times

References

• Optimizing HPC Applications with Intel® Cluster Tools,
Alexander Supalov; Andrey Semin; Michael Klemm;
Christopher Dahnken, Apress, 2014

• https://software.intel.com/en-us/application-snapshot-user-
guide

• https://software.intel.com/en-us/vtune-amplifier-cookbook
• https://software.intel.com/en-us/advisor/documentation/view-

all

https://software.intel.com/en-us/application-snapshot-user-guide
https://software.intel.com/en-us/vtune-amplifier-cookbook
https://software.intel.com/en-us/advisor/documentation/view-all

Hands-on

• Goal: Identify hotspots in sample code
• Targets for optimization

• Test code has 4 functions: mm[1-4]
• Each does a different version of matrix-matrix multiplication C=A�B

• Each function is called 50 times
• Where should we optimize?

Adroit Test Set Up

• Enable X11 forwarding
• “ssh –Y -C <user>@adroit.princeton.edu
• Will need local xserver (XQuartz for OSX, Xming for Windows)

• Clone the repo

• Follow instructions in repo Readme.md

• What functions are most/least expensive?

• �What are the vectorization efficiency of each loop?

� if you have extra time

git clone https://github.com/beiwang2003/Bootcamp2018-Perf-Tuning.git

