GETTING STARTED WITH PERFORMANCE OPTIMIZATION AND TUNING

Bei Wang, Ph.D.

HPC Software Engineer Research Computing, Princeton University

Princeton Research Computing Bootcamp Oct 31, 2018

About Me

- Bei Wang, Ph.D., HPC Software Engineer at Research Computing
- 7 years at Princeton University Working on Research and Development in Parallel Computing Applications (plasma physics and fluid dynamics domains)
- Co-PI of Intel Parallel Computing Center (IPCC) at Princeton
- Office: 334 Lewis Library (TW), 111 Peyton Hall (MTF)
- Email: beiwang@princeton.edu

Outline

- An introduction to the **idea of performance analysis**
 - Methodology
 - Workflow
 - Measurement tools
 - Hands-on
- Focused primarily on the **HPC recourses at Princeton**
 - Hardware: Intel CPU
 - Tools: Intel performance tuning tools
 - Scientific application codes written with C/C++ and Fortran languages
 - Most principles apply universally

What is Performance Tuning?

- The process of improving the efficiency of an application to better utilize a given hardware resource
 - Requires some **understanding** about the performance features of **the given hardware**
 - Identifying bottlenecks, determining efficiency and eliminating the bottlenecks if possible
 - **Incrementally** complete tuning until the performance requirements are satisfies

"The Free Lunch is Over"

40 Years of Microprocessor Trend Data 10⁷ Transistors (thousands) 10^{6} Single-Thread 10⁵ Performance $(SpecINT \times 10^3)$ 10^{4} Frequency (MHz) 10³ **Typical Power** 10² (Watts) Number of 10^{1} Logical Cores 10⁰ 1970 1980 1990 2000 2010 2020 Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Performance Analysis Methodology:

A top-down approach

"Optimizing HPC Applications with Intel Cluster Tools", Book, Alexander Supalov, Andrey Semin, Michael Klemm, Chris Dahnken, 2014

Prepare

obviously, we can't pass all options to the compiler as a compiler flag.
#'Important' flags, like optimizations, math behavior twiddles, and arch flags should go here
BUILD_FLAGS:=\$(CFLAGS) \$(COPTFLAGS)

```
BUILD_FLAGS_STR:=$(shell sh -c "printf %q \"$(BUILD_FLAGS)\"")
```

```
CINFOFLAGS=-DGIT_VERSION=\"$(GIT_VERSION)\" -DCOMPILER_VERSION=\"$(COMPILER_VERSION)\" -DBUILD_HOST=\"$(BUILD_HOST)\" -DBUILD_FLAGS=\"\
$(BUILD_FLAGS_STR)\"
```

• Basic variants: thread count, affinity, working set size

Measure

• Time program run time

- linux commands: time, prof stat
- Get an idea of overall run time
- Put timer around loops/functions
 - gettimeofday, MPI_Wtime, omp_get_wtime
 - Works for small code base to identify hotspots
- Use profilers recommended
 - What to collect?
 - Timing, hardware counter, trip counts, call stack etc
 - How to collect?
 - Sampling-based
 - Records system state at periodic intervals
 - Not intrusive-low overhead
 - Instrumenting-based
 - Add instructions in the source code to collect detailed information for interested events
 - Intrusive-high overhead for frequent events
 - Tracing-based
 - Records all operations
 - Intrusive-high overhead

Hypothesize

- Why is my code slow?
 - CPU bound
 - Memory bound
 - I/O bound
 - Network bound
 - Unbalanced Workload (Parallel)
- What is the best I can expect?
 - CPU
 - Memory/Cache
 - I/O
 - Network
 - Parallel Scaling

Modify

- Change only **one thing at a time**
- Consider the ease (difficulty) of implementation
- Keep **track** of all **changes**
- Apply regression test to **ensure correctness** after each change

Words to Remember: Fast computing of wrong result is completely irrelevant!

When to Stop? Amdahl's law

https://en.wikipedia.org/wiki/Amdahl%27s_law

Performance Tuning Tradeoff

Using Profilers

- Include debug symbols in executable
 - -8
 - Ability to trace performance back to source code
- Use release-build optimization flags
 - E.g., **-O**3, -*xhost* (Intel), -*ipo* (Intel)
 - Don't waste time optimizing code the compiler can do automatically!
- Keep useful debugging information
 - E.g., -*debug inline-debug-info* (Intel) or -*debug full* (Intel)
 - Sometimes the compiler will optimize out useful regions
- Include required profiling flags during compiling
 - E.g., -*pg* (Gprof)
 - Needed by instrumentation-based profiling

Popular Tools

- Many free and commercial products, for example
 - Linux **Perf**: Sampling profiler with support of hardware events on several architectures
 - Linux **Oprofile**: Sampling profiler for Linux that counts cache misses, stalls, memory fetches, etc
 - GNU **Gprof**: Several tools with combined sampling and call-graph profiling
 - Valgrind (**Callgrind**): System for debugging and profiling; supports tools to either detect memory management and threading bugs, or profile performance
 - ARM **MAP**: Performance profiler. Shows I/O, communication, floating point operation usage and memory access costs
 - Intel **VTune** Amplifier XE: Tool for serial and threaded performance analysis. Hotspot, call tree and threading analysis works on both Intel and AMD x86 processors.
 - Intel **Advisor**: Tool for vectorization
 - ...

https://en.wikipedia.org/wiki/List_of_performance_analysis_tools

Tools at Princeton

- Research Computing at Princeton supports a number of licensed performance tuning tools
 - Profiling
 - ARM MAP
 - Intel VTune
 - Tracing
 - Intel Trace Analyzer and Collector
 - Vectorization
 - Intel Advisor
 - Debugging
 - ARM DDT
 - Intel Inspector

Intel Tools at Princeton

- Application Performance Snapshot
 - High level tool for an overview of performance mpirun -n <N> aps \${EXE} \${ARGS}
- Intel VTune Amplifier
 - Node level counter based performance profiler

mpirun –n 1 amplxe-cl –c \${COLL} -finalization-mode=deferred -- \${EXE} \${ARGS}: -n <N-1> \${EXE} \${ARGS}

- Recommended Collections:
 advanced-hotspots, general-exploration, memory-access, hpc-performance
- Finalize on headnode amplxe-cl -finalize -r \${RESULT_DIR} -search-dir \${PATH_TO_OBJS_AND_EXE} source-search-dir \${PATH_TO_SOURCE}

• Intel Advisor

- Node level vectorization and threading information, and roofline mpirun -n 1 advixe-cl -c survey -project-dir -- \${EXE} \${ARGS}: -n <N-1> \${EXE} \${ARGS} mpirun -n 1 advixe-cl -c tripcounts -flop -project-dir -- \${EXE} \${ARGS}: -n <N-1> \${EXE} \${ARGS}
- Intel Trace Analyzer and Collector
 - At scale MPI performance analyzer

Workflow of Tool Selection

Application Performance Snapshot (APS)

- A **quick view** into a shared memory or MPI application's use of available hardware (CPU, FPU and Memory)
- Identify basic performance optimization opportunities and the **next step** for analysis
- Extremely **easy** to use
- Results shown as HTML format
- **Scales** to large jobs
- Multiple methods to obtain:
 - Free download from APS website: <u>https://software.intel.com/sites/products/snapshots/a</u> pplication-snapshot/
 - Part of Intel Parallel Studio XE or Intel VTune Amplifier

Typical APS Report (HTML Based)

Run the following command to collect the data and complete the analysis: mpirun -n <N> **aps** \${EXE} \${ARGS} aps -report=\${PATH_TO_APS_RESULT_DIR}

Rank to Rank Communication Report

Run the following command to get the report: aps-report -g \${PATH_TO_APS_RESULT_DIR}

Intel VTune Amplifier

- Accurate data
 - Hotspot
 - Processor microarchitecture
 - Memory access
 - Threading
 - I/O
- Flexible
 - Linux, Windows and Mac OS analysis GUI
 - Link data to source code and assembly
 - Easy set-up, no special compiles
- Shared memory only
 - Serial
 - OpenMP
 - MPI on a single node

Grouping: Function / Call Stack							•	× 0					
CPU Time ¥													
Function / Call Stack	Function / Call Stack Effective Time by Utilization Spin Time												
	Idle	Poor	Ok	Ideal	Over	Spin time	Overnead Time						
chargei\$omp\$parallel@238	Os	0.035s 📒	265.604s	Os	0s	0s	0s	347,596					
radial_bin_particles\$omp\$parallel@64	0s	0s	103.815s	0s	0s	0s	0s	67,71					
all_field_esum	Os	Os	103.129s	Os	Os	0s	0s	174,545					
pushi\$omp\$parallel@154	Os	Os	81.941s 📒	Os	Os	Os	0s	175,570					
[libiomp5.so]	Os	0.092s	64.344s 📒	Os	Os	Os	Os	27,955					
intel_avx_rep_memset	Os	0s	20.488s	Os	Os	Os	Os	21					
poisson\$omp\$parallel_for@362	Os	0s	12.818s	Os	Os	0s	Os	18,425					
[vmlinux]	0.004s	0.147s	12.531s	Os	Os	0s	0s	4,930					
poloidal_qtinv	Os	Os	10.935s	Os	Os	0s	Os	13,351					
poloidal_qtinv	Os	Os	10.702s	Os	Os	Os	Os	13,609					
svml_cos8_z0	Os	0s	8.664s	Os	0s	0s	0s	23,310					
poloidal_qtinv	Us	Us	7.2465	Us	0s	0s	0s	12,566					
poloidal_mtheta	Us	Us	6.648s	Us	0s	Us	Us	12,797					
poloidal_mtheta	Us	Us	5.5755	Us	Us	Us	Us	14,284					
abs_min_real	05	US	5.2455	Us	Us	Us	Us	15,212					
0.4-55	8214450usec	8214500usec	9214550usec		82146500	ec	Durlas Assas						
	02144300360	02140000360	02140500360	02140000360	021403003		Ruler Area:	Instance					
OMP Master Thread #0 (TID							C CopenM	P Barrier-					
OMP Worker Thread #14 (TI							to-Barrier Seg	ment					
OMP Worker Thread #1 (TID							Throad	-					
OMP Worker Thread #7 (TID							- mead						
OMP Worker Thread #2 (TID							Running						
OMP Worker Thread #22 (TI	Spin and Overhead												
OHD Worker Thread #22 (TI	OMP Worker Thread #22 (TI												
Owner vvorker Inread #20 (11													
OMP Worker Thread #10 (T)							CPU Time						

A Rich Set of Predefined Analysis Types

- Basic analysis:
 - hotspots: what functions use most time?
 - concurrency: identify potential parallelization opportunities/issues
- Advanced analysis
 - advanced-hotspots: extend the hotspots with call stacks, statistical call counts, CPI metric etc
 - general-exploration: hardware-level performance data
 - hpc-performance: overview of CPU, memory and FPU utilization
 - memory-access: identify memory-related issues
 - ...

Hotspots (Summary View)

Use **hotspots analysis** to find where your program is spending the most time, ensuring your optimizations have a bigger impact.

Run the following command to collect the data (remotely) and complete the analysis (locally): amplxe-cl -collect hotspots -knob analyze-openmp=true -finalization-mode=deferred -- \$<EXE> \$<ARGS> amplxe-cl -finalize -r \$<RESULT_DIR> -search-dir \$<OBJS_DIR> -source-search-dir \$<SOURCE_DIR>

Hotspots (Bottom-up View)

Use **bottom-up view** to identify the most time-consuming functions and analyze their call flow from a function to its parent functions

Double Click Function to See Source Line

Basic Hotspots by CPU Utilization dewpoint (change) Mit UULAM Boor Ausembly Image Containing of Containin	
Select source to density (1) one one <td>PLIFIER 2018</td>	PLIFIER 2018
Source Count into intermediation Count into intermediation Count into into intermediation Count into into intermediation Count into into into into into into into in	-
Source Original Output: Set Address Both Address Both Address Both T <tht< th=""> T T</tht<>	d stack(s)
Select source to highlight asso desity:protections 0.000 40 desity:protection 0.000 50 desity:protection 0.000 50 desity:protection 0.000 60 desity:protection 0.000 60 desity:protection 0.000 70 desity:protection 0.000	gei\$omp\$paral
200 cornet rail a = part end	+0xb4c52 · [u +0x84356 · [u
construit is	ch point frame]
222 Const reak arry = 1.0 224 Good balae 228 intl krid, wax 000 226 fif First Titler 000 000 226 fif first Titler 000 000 226 fif first Titler 000 000 226 foragina ong parallel 000 000 227 const int tid 000 000 000 228 for fint i do 000 000 000 229 fifdef VECT_OWARE 0.000 0.000 0.000 229 fifdef VECT_OWARE 0.000 0.000 0.000 0.000 229 fifdef VECT_OWARE 0.000 0.000 0.000 0.000 0.000 230 for (int i = 0) i 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	+0x853af • [un
233 fif File TIME 0 234 double stort t inter 0 236 fprogen one parallel 0.00% 0.001a 237 for int inter 0 0 0.001a 238 fprogen one parallel 0.00% 0.001a 0.001a 239 fprogen one parallel 0.00% 0.001a 0.001a 230 const int tind 0.00% 0.001a 0.001a 0.001a 0041bdes 247 intl.Wrdx, Wrax 0.005a 0.001a 0041bdes 247 intl.Wrdx, Wrax 0.001a 0041bdes 247 intl.Wrdx, Wrax 0.005a 0041bdes 247 ohl base 500 0.005a 0041bdes 247 ohl base 500 0.005a 0041bdes 247 ohl base 500 0.005a 0041bdes 247 ohl base 502 ohl base 502	-0x5be29 - [u
23 *** / ring 0 23 #endif 0 23 #endif 0 23 #prayma one parallal 0 23 #prayma one parallal 0 23 # organization 0 24 const int tid 0 25 f const int tid 24 const int nthreads 0 25 f demistry_par 26 most ying most ying 27 demistry_par 0 28 f const int nthreads 0 29 fildef VET_CHARCE most ying most ying 29 fildef VET_CHARCE 0 0 29 fildef VET_CHARCE 0 0 20 fildef VET_CHARCE 0 0 20 fildef VET_CHARCE 0 0 20 fildef VET_CHARCE 0 0 21 wreal "demistry:part i 0 0 23 for (int i = 0; i 0 0 0 23 for (int i = 0; i <td></td>	
20 #minif 00 0.005 238 #pragma oup parallel 0.00 0.005 240 const int tide 0.00 0.005 241 const int tide 0.00 0.001 241 const int inthreads 0.00 0.001 241 const int inthreads 0.00 0.001 241 const int inthreads 0.000 0.001 241 ising intra-interval 0.000 0.001 241 ising intra-interval 0.000 0.0005 241 ising intra-interval 0.000 0.0005 242 intra-interval 0.000 0.0005 253 for (int i = 0, i 0.0005 0.0005 254 intra-interval 0.000 0.0005 255 intra-interval 0.000 0.0005 256 <td></td>	
233 #pragma omp parallel 0.0005 233 (0.0005 234 const int tid 0.0005 235 (0.0005 241 const int tid 0.0005 242 const int tid 0.0005 0x1bda0 241 const int tid 241 const int tid 0.0005 1x10000 demaityi_par 0.0005 0x1bda0 247 sityi_parti 0x1bda0 247 classical 0x1bda0 247 classical 0x1bda0 247 sityi_parti 0x1bda0 247 sityi_parti 0x1bda0 247 sityi_parti 0x1bda0 248 sityi_parti <td< td=""><td></td></td<>	
238 #prage orp parallel 0.0% 0.005 249 const int tid 0.0% 0.015 241 const int tid 0.0% 0.015 0x1bbad 241 const int tid 0.0% 1241 const int tid 0.0% 0.015 0x1bbad 241 const int tid 0.0% 1241 const int tid 0.0% 0.015 0x1bbad 247 inul \trdx, \trdx 0.041bad 0x1bbad 248 inul \trdx, \trdx 0.0641bad 0x1bad 247 inul \trdx, \trdx 0.0641bad 0x1bad 247 inul \trdx, \trdx 0.0641bad 0x1bad 248 inul \trdx, \trdx 0.0641bad 125 inul \trdx, \trdx 0.076 0.075 126 for (int i = 0; i < 0.076	
20 const int tid 0.001 241 const int nthreads 0.001 Select source to densityi.par 0.001 highlight asm ti = 0; i 0.002 259 r 0.001 250 for (int i = 0; i 0.001 251 wreal *densityi.part 0.005 253 for (int i = 0; i 0.001 254 densityi.partil 0.005 255 j 0.001 256 j 0.005 256 j 0.005 257 for (int i = 0; i 0.005 258 j 0.005 259 pragma onp for schedule(st 0.005 250 for (int i = 0; i 0.005 251 wreal *densityli.vat 0.005 256 j 0.005 257 for dinti = 0; i 0.005 258 pragma onp for schedule(st 0.005 259 for illi = 0; i 0.005 250 for illi = 0; i 0.005 251 densityli.li.vat 0.005	
241 const int nthreads 0.0% 0.001s Select source to highlight asm remityi_par 0.0% 0.001s bidlade 247 add trax, trdx 0.0% bidlade 247 mov_thrx, trdi 0.0% bidlade 247 mov_thrx, trdx 0.0% bidlade 251 mov_thrx, trdx 0.0% cital mov_thrx, trdx 0.0% <	
Select source to density:_par octibase 247 shi bit 3003, krdx highlight asm ti = 0; i <	
Select source to highlight asm vit i = 0; i vit j_part[i 0.8% 8.264s Vit i = 0; i vit i = 0; i 0.0% 0.000s Vit i = 0; i vit i = 0; i 0.0% 0.000s Vit i = 0; i 0.0% 0.001s Vit i = 0; i 0.0% 0.005s Vit i = 0; i 0.0%	
Displicit asm tiscpin Displicit Displicit Displicit Displicit Displicit 28 ////////////////////////////////////	
highlight asm ti = 0; i < i < i < 0.8% 8.264s 249 7 0.8% 8.264s 0.0% (************************************	
248 7 249 7 249 7 250 #ifdef VECT_CHARCE 251 wreal *densityi_part = 252 for (int i = 0; i <	
240 7 240 7 250 #ifdef VECT_CHARGE 251 wreal *densityiv_part = 0.0% 252 0.0% 0.001s 253 for (int i = 0; i 0.0% 0.001s 254 densityiv_part[i] 0.0% 0.001s 255 3 0 0.0% 0.001s 256 0 0 0.0% 0.001s 257 #endif 0 0.005s 258 10 0.0% 0.005s 259 #pragma omp for schedule(st 0.0% 0.005s 259 #pragma omp for schedule(st 0.0% 0.005s 261 densityi[].val 0 wtlatdef 49 262 3 0 0.005s 0.01bs27 40cs4% 10 264 0 0.01bs27 40cs4% 10 0.01bs27 40cs4% 265 real wi/G (Mrap) 0.01s 0.005s 0.01bs27 40cs4% 0.005s 266 for (int i = 0; i <	
250 #ifdef VECT_CHARGE 0.003s 251 wreal *densityiv_part = 0.004 252	
251 wreal *densityiv_part = 0.0% 0.003s 252 0 0.041bcds 251 imul %ebx, %r15d 0 253 for (int i = 0; i <	
252 for (int i = 0; i <	
254 density: part[i] = 0, 1 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 <t< td=""><td></td></t<>	
255 } 0x41b4d8 484 movq %rax, Oxec8(%rsp) 0x 256 #endif 0x41b4d8 253 imul %edx, %eax 0x 258 #org %rax, Oxec8(%rsp) 0x 0x41b4d8 253 imul %edx, %eax 0x 258 0x41b4d8 251 movq %r15d, %r15 0x 0x 0x41b4d8 253 imul %edx, %eax 0x 0x 259 #pragma omp for schedule(st 0.000 0x000s 0x41b4d8 499 movq %rbx, 0xeb0(%rsp) 0x 0x 261 densityi[].val 0x41b4d8 251 leaq (wrcx, wrls, 80, %rdi 0x 0x41b4d7 253 test %eax, %eax 0x 0x41b4d7 253 test %eax, %eax 0x 0x41b4d8 254 test %eax, %eax 0x 0x41b4d7 253 test %eax, %eax 0x 0x41b4d7 253 test %eax, %eax 0x 0x 0x41b4d7 253 test %eax, %eax 0x 0x41b4d7 0x	
256 44bde0 253 inul %edx, %eax 64 257 4mif 0x4bde0 251 movsxd %rb5, %rbx 64 258 0x4bde0 251 movsxd %rbx, %rbx 64 259 #pragma omp for schedule(st 0.0% 0.005s 260 for (int i = 0; i <	
257 #endif 0x41b4e3 251 movsxd %r15d, %r15 0x41b4e3 251 259 #pragma omp for schedule(st 0.0% 0.000s 0x41b4e3 299 movsxd %r15d, %r15 0x4b20 0x41b49 260 for (int i = 0; i <	
239 #pragma omp for schedule(st 0.0% 0.005s 259 for (int i = 0; i 0 260 for (int i = 0; i 0 261 densityi[i].val 0 262 } 0 263 #endif 0 264 0 0 264 0 0 265 #ifdef VECT_CHARGE 0 266 real w1v[CHARGE_SIM0_W] 0 267 real w2v[CHARGE_SIM0_W] 0	
260 for (int i = 0; i <	
261 densityi[i].val 0x4lb4f3 251 movq %rdi, 0x1f08(%rsp) 0x 0x4lb4f3 253 test %eax, %eax 0x4lb5f3 100 x4lb5f3 100 x4	
262 } 0x41b4fd 253 test 'weax, 'weax 0x41b5df 254 263 #endif 0x41b5df 253 ile_0x41b52f 4elock 7: 0x41b52f 264 0x41b50f 253 ile_0x41b52f 4elock 7: 0x41b52f 265 #ifdef VECT_CHARGE 0x41b50f 253 inul %r14d, %edx 0x41b50f 266 real w1v[CHARGE_SIM0_W] 0x41b50f 253 icmul %r13,2), %eax 0x41b50f 267 real w2v[CHARGE_SIM0_W] 0x41b50f 253 cmp \$0xc, %eax 0x41b50f	
Image: Construction Image: Construction Image: Construction Image: Construction 264 0x41b501 8Lock 7: 0x41b501 25 265 #ifdef VECT_CHARGE 0x41b501 253 imult %r1dd, %edx 0x41b501 266 real w1v[CHARGE_SIM0_WI 0x41b505 253 leal (%rdx, %r13,2), %eax 0x41b501 267 real w2v[CHARGE_SIM0_WI 0x41b509 253 cmp \$0xc, %eax 0x41b501	
265 #ifdef VECT_CHARGE 0x41b501 253 imul %r14d, %edx 0x 266 real w1v[CHARGE_SIMD_W] 0x41b505 253 leal (%rdx,%r13,2), %eax 0x 267 real w2v[CHARGE_SIMD_W] 0x41b509 253 cmp \$0xc, %eax 0x	
266 real w1v[CHARGE_SIMD_WI 0x41b505 253 leal (%rdx,%r13,2), %eax 1 267 real w2v[CHARGE_SIMD_WI 0x41b509 253 cmp \$0xc, %eax 1	
267 Feat wzv[CHARGE_SIMD_w]	
268 jpt jjlv[CHARGE SIMD WT	
269 intij2/CHARGE_STMD_WI	
270 #endif 0x41b512 254 xor%esi,%esi	
271 0x41b514 254 leal (%r14,%r14,11,%eax	
272 mpragina olimpioarrieri 273 0x41051c 254 leal (wrax, wr13,2), wedx	
274 #pragma omp for 0.0% 0.001s 0x41b520 254 movsxd %edx, %rdx	
275 for (int mo = 0; mo 0.0% 0.181s 0x41b523 254 shl \$0x3, %rdx 0	
2/6 real * restric 0.00% 0.00% 0.00% 0.00% 0.41b527 254 vzeroupper	
278 real *_restric 0041552f Block 9:	
279 real *_restric 0x41b52f 260 test %ebx, %ebx	
280 real *_restrid 281 real *_restrid	
Service 1.3% 14.004S Frighter	

Vectorization 101

Modern computers have vector registers and SIMD (Single Instruction Multiple Data) instructions. This allows one CPU to do multiple calculations at once.

The size of the vector register varies by the architecture. Skylake Server architecture (at Tigercpu of Princeton) has a vector length of 512 bits (8 doubles or 16 floats)

"Expertly tune your application" Intel webinar, Carlos Rosales-Fernandez, 2018

Intel Advisor

- Vectorization Advisor
 - **Survey**: find the vectorization information for loops and provide suggestions for improvement
 - **Trip Counts**: generate a **Roofline** Chart
 - Dependencies: determine if it is safe to force vectorization
 - Memory Access Patterns (MAP): see how you access the data
- Elapsed time: 81.27s 👩 Vectorized 🗂 Not Vectorized 🖉 🛛 MKL Threading Workflow Vectorization Workflow FILTER: All Modules 👻 All Sources 👻 📱 Summary 🛯 💩 Survey & Roofline 📲 Refinement Reports OFF Batch mode **Run Roofline** Vectorization Advisor 🕨 Collect 🖿 📴 Vectorization Advisor is a vectorization analysis toolset that lets you identify loops that will benefit most from parallelism, discover performance issues preventing from effective vectorization and characterize your memo vectorization bottlenecks with Advisor Roofline model automation. Enable Roofline with Callstacks Program metrics 1. Survey Target Elapsed Time 81.27s 🖒 Collect 片 🖿 🖳 AVX512, AVX2, AVX, SSE2, SSE Vector Instruction Set Number of CPU Threads 1 Total GFLOP Count 402 55 Total GELOPS 4 95 Mark Loops for Deeper Analysis Total Arithmetic Intensity ⁽²⁾ 0.10793 Select checkboxes in the Survey & Roofline tab to mark loops for other Loop metrics Advisor analyses. -- There are no marked loops Metrics Total > MKL det... Total CPU time 100.0% 1.1 Find Trip Counts and FLOP 98.2% Time in 13 vectorized loops 79.62s Time in scalar code 1.44s G Collect 片 🖿 🦕 Trip Counts 100.0% Total GELOP Count 402.55 Total GFLOPS 4.95 FLOP -- Analyze all loops --✓ Vectorization Gain/Efficiency ▲ 2.1 Check Memory Access Patterns Vectorized Loops Gain/Efficiency @ 5.03x Program Approximate Gain ③ 4.96x 🖡 Collect 💼 📴 -- No loops selected ○ Top time-consuming loops[®] 2.2 Check Dependencies Self Time® Total Time® Loop Trip Counts® 🕼 Collect 💼 🕟 o [loop in mml at mm.h:27] 47.680s 47.680s 31; 1; 1 -- No loops selected -(loop in mm2 at mm.h:39) 16.200s 16.200s 124; 1 o [loop in mm3 at mm.h:51] 14.620s 14.620s 124:1 (loop in mml at mm.h:26) 0.650s 48.330s 1000 [loop in <u>[MKL BLAS</u> at ?] 0.350s 0.350s 64 Collection details G Re-finalize Sur...

- Threading Advisor
 - Suitability: predict how well your proposed threading model will scale

Survey

Run the following command to collect the data (remotely):

advixe-cl -c survey -project-dir \$<PROJ_DIR> -no-auto-finalize -- \$<EXE> \$<ARGS>

Trip Counts

This loop's scalar count is ~248

										1							
Ô	Elapsed time: 81.27s 🙆 Vectorized 🕻) N	ot Vecto	orized 🖉 N	1KL FIL	LTER:	All Modules	◄ All Sou	irces 🔻	Loops And	d Functions	▪ I Tł	nis loop	o is called 50) milli	on ti	mes
🖪 Sı	Summary 🗞 Survey & Roofline 📓 Refinement Reports																
,			Vectorized Loops		≫	🔊 Compute Performanc		☆ ≫	Solf AL	⊗ Self 🔊	Tip Count	:s 🕇 🕅	Instruction Set An	alysis	≫	Advance	
8	+ - Function call sites and Loops		Vec	Efficiency	Gai	VL (Self GFL	FP Mask Util	lization	Sell Al	(GB)	Average	Call Count	Traits	Data	Num.	Advanc
<u>≓</u> [± 🖞 [loop in mm1 at mm.h:27]	1	AVX	29%	2.33x	8	2.097(99.0%		0.08333	1200.000	31; 1; 1	500000	FMA; Gathers;	Float		Unroll
μ	±♂ [loop in mm2 at mm.h:39]		AVX	100%	8.21x	8	6.154(99.0%		0.07999	1246.400	124; 1	500000	FMA	Float3		
	🍊 [loop in mm3 at mm.h:51]		AVX	100%	10	8	6.826(99.0%		0.08333	1197.600	124;1	500000	FMA	Float3		Interch
	loop in mm1 at mm.h:26]						3.769(100.0%		0.87500	2.800	1000	50000	Permutes	Float		
E (⊻ }_ 2						1.071(50.0%		0.20000	1.500		50	FMA	Float		
1	⊻ ƒ mm3						0.800(25.0% 📖		0.12500	1.600			FMA	Float		
0	∍o [loop in main at matmul_test.cpp:104]	е					0.067(0.01667	0.120	1000	1000	Divisions; Type Co.	. Float		
(⊻ ƒ_start										< 0.001		1				
[⊻ ƒ main									0.00272	< 0.001		1	FMA; Gathers; Per	Float		
[∍o [loop in main at matmul_test.cpp:102]	е									< 0.001	1000	1				
[∃∱mml										< 0.001		1	FMA; Gathers; Per	Float		

Run the following command to collect the data (remotely): advixe-cl -c tripcounts -flop -project-dir \$<PROJ_DIR> -no-auto-finalize -- \$<EXE> \$<ARGS> Note: it is important to use the same project directory as the survey analysis

References

- Optimizing HPC Applications with Intel® Cluster Tools, Alexander Supalov; Andrey Semin; Michael Klemm; Christopher Dahnken, Apress, 2014
- <u>https://software.intel.com/en-us/application-snapshot-user-guide</u>
- <u>https://software.intel.com/en-us/vtune-amplifier-cookbook</u>
- <u>https://software.intel.com/en-us/advisor/documentation/view-all</u>

Hands-on

- Goal: Identify hotspots in sample code
 - Targets for optimization
- Test code has 4 functions: mm[1-4]
 - Each does a different version of matrix-matrix multiplication C=A × B
- Each function is called 50 times
 - Where should we optimize?

Adroit Test Set Up

- Enable X11 forwarding
 - "ssh -Y -C <user>@adroit.princeton.edu
 - Will need local xserver (XQuartz for OSX, Xming for Windows)
- Clone the repo

git clone https://github.com/beiwang2003/Bootcamp2018-Perf-Tuning.git

- Follow instructions in repo Readme.md
- What functions are most/least expensive?
- *XWhat are the vectorization efficiency of each loop?*

※ if you have extra time