GETTING STARTED WITH
PERFORMANCE OPTIMIZATION
AND TUNING

Bei Wang, Ph.D.

HPC Software Engineer
Research Computing, Princeton University

Princeton Research Computing Bootcamp
Oct 31, 2018

“\j PRINCETON UNIVERSITY

* Bei Wang, Ph.D., HPC Software Engineer at Research
Computing
* 7 years at Princeton University Working on Research

and Development in Parallel Computing Applications
(plasma physics and fluid dynamics domains)

* Co-PI of Intel Parallel Computing Center (IPCC) at
Princeton

» Office: 334 Lewis Library (TW), 111 Peyton Hall (MTF)
* Email: beiwang@princeton.edu

‘537 PRINCETON UNIVERSITY

* An introduction to the idea of performance analysis
* Methodology
* Workflow
* Measurement tools
* Hands-on

* Focused primarily on the HPC recourses at Princeton
* Hardware: Intel CPU
* Tools: Intel performance tuning tools

* Scientific application codes written with C/C++ and
Fortran languages

* Most principles apply universally

‘537 PRINCETON UNIVERSITY

* The process of improving the efficiency of an
application to better utilize a given hardware resource

* Requires some understanding about the performance
features of the given hardware

* Identifying bottlenecks, determining efficiency and
eliminating the bottlenecks if possible

* Incrementally complete tuning until the performance
requirements are satisfies

“\j PRINCETON UNIVERSITY

40 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance
(SpecINT x 10°)

Frequency (MHz)

| : | Typical Power
e | e - ; . - (WattS)

Number of
Logical Cores

A 4
100 ----- > ‘ooommm
| i i i |
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

https:/ /www karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

'/ PRINCETON UNIVERSITY

A top-down approach

Hard disk

SYSTEM

(hardware and system
software)

APPLICATION

ization

MICRO-

ARCHITECTURE Tuning

“Optimizing HPC Applications with Intel Cluster Tools”, Book, Alexander Supalov, Andrey Semin, Michael
Klemm, Chris Dahnken, 2014

' PRINCETON UNIVERSITY

Prepare
Create a benchmark Prepare

* Choose a workload which is /
measurable, representative, static and reproducible

Modify Measure

* Choose a performance metric which is
quantifiable

Document
Hypothesize Analyze

N

» Code generation: compiler version, flags etc
E.g.: in Makefile

GIT_VERSION:=$(shell sh -c¢ './GIT-VERSION-GEN')
COMPILER_VERSION:="$(CC)-$(shell $(CC) --version | head -n1l | cut -d' ' -f&)"
BUILD_HOST=$(shell sh -c './BUILD-HOST-GEN')

obviously, we can't pass all options to the compiler as a compiler flag.

#'Important' flags, like optimizations, math behavior twiddles, and arch flags should go here
BUILD_FLAGS:=$(CFLAGS) $(COPTFLAGS)

BUILD_FLAGS_STR:=$(shell sh -c "printf %qg \"$(BUILD_FLAGS)\"")

CINFOFLAGS=-DGIT_VERSION=\"$(GIT_VERSION)\" -DCOMPILER_VERSION=\"$(COMPILER_VERSION)\" -DBUILD_HOST=\"$(BUILD_HOST)\" -DBUILD_FLAGS=\"\
$(BUILD_FLAGS_STR)\"

* Basic variants: thread count, affinity, working set size

'/ PRINCETON UNIVERSITY

Measure

* Time program run time
* linux commands: time, prof stat
* Get an idea of overall run time
* Put timer around loops/functions
 gettimeofday, MPI_Wtime, omp_get_wtime
» Works for small code base to identify hotspots
* Use profilers - recommended

* What to collect?
+ Timing, hardware counter, trip counts, call stack etc
 How to collect?
* Sampling-based
* Records system state at periodic intervals
* Not intrusive-low overhead
* Instrumenting-based

Prepare
Modify Measure
Hypothesize Analyze

N

* Add instructions in the source code to collect detailed information for interested events

* Intrusive-high overhead for frequent events
* Tracing-based

* Records all operations

* Intrusive-high overhead

‘537 PRINCETON UNIVERSITY

Hypothesize

* Why is my code slow?

« CPU bound
* Memory bound
* 1/O bound

 Network bound

* Unbalanced Workload (Parallel)

* What is the best I can expect?

« CPU

* Memory/Cache
« 1/O

* Network

* Parallel Scaling

'/ PRINCETON UNIVERSITY

Prepare

O\

Modify Measure

\ /

Hypothesize Analyze

N

Modify
* Change only one thing at a time Prepare
* Consider the ease (difficulty) of / \
implementation Modify Measure
« Keep track of all changes \ J
* Apply regression test to ensure correctness
Hypothesize Analyze

after each change

N

%W PRINCETON UNIVERSITY

hotspot

Speedup

Amdahl's Law

S —
18 | 7~ ~
// Parallel portion
16 | 50%
......... 75%
14 | —— 90%
—— 95%
12
10
8
6
4
2
0 +
Number of processors Tt eaes
L2
10
2x speed up in hotspot 20x speed up in hotspot
1.5x speed up overall 2.73x speed up overall

https:/ /en.wikipedia.org/wiki/ Amdahl%27s_law

' PRINCETON UNIVERSITY

 Portability)
Readability
{ Performance } < Maintainability >
Reliability
_ Time W,

' PRINCETON UNIVERSITY

Include debug symbols in executable

* 8

» Ability to trace performance back to source code

Use release-build optimization flags

* E.g., -O3, -xhost (Intel), -ipo (Intel)

* Don’t waste time optimizing code the compiler can do
automatically!

Keep useful debugging information

* E.g., -debug inline-debug-info (Intel) or -debug full (Intel)

* Sometimes the compiler will optimize out useful regions
Include required profiling flags during compiling

* E.g., -pg (Gprof)

* Needed by instrumentation-based profiling

“\j PRINCETON UNIVERSITY

* Many free and commercial products, for example

Linux Perf: Sampling profiler with support of hardware events on several
architectures

Linux Oprofile: Sampling profiler for Linux that counts cache misses, stalls,
memory fetches, etc

GNU Gprof: Several tools with combined sampling and call-graph profiling
Valgrind (Callgrind): System for debugging and profiling; supports tools to

either detect memory management and threading bugs, or profile
performance

ARM MAP: Performance profiler. Shows I/O, communication, floating point
operation usage and memory access costs

Intel VTune Amplifier XE: Tool for serial and threaded performance

analysis. Hotspot, call tree and threading analysis works on both Intel and
AMD x86 processors.

Intel Advisor: Tool for vectorization

https:/ /en.wikipedia.org/wiki/List_of_performance_analysis_tools

“\j PRINCETON UNIVERSITY

* Research Computing at Princeton supports a
number of licensed performance tuning tools

* Profiling
* ARM MAP
* Intel VTune
* Tracing
* Intel Trace Analyzer and Collector
* Vectorization
* Intel Advisor
* Debugging
« ARM DDT
* Intel Inspector

'/ PRINCETON UNIVERSITY

* Application Performance Snapshot
+ High level tool for an overview of performance
mpirun -n <N> aps ${EXE} ${ARGS}
* Intel VTune Amplifier
* Node level counter based performance profiler

mpirun -n 1 amplxe-cl -c¢ ${COLL} -finalization-mode=deferred -- ${EXE} ${ARGS}: -n
<N-1> ${EXE} ${ARGS}

* Recommended Collections:
advanced-hotspots, general-exploration, memory-access, hpc-performance

* Finalize on headnode

amplxe-cl -finalize -r $§{RESULT _DIR} -search-dir ${PATH_TO_OBJS_AND_EXE} -
source-search-dir ${PATH_TO_SOURCE}

 Intel Advisor

* Node level vectorization and threading information, and roofline
mpirun -n 1 advixe-cl -c survey -project-dir -- ${EXE} ${ARGS}: -n <N-1> ${EXE} ${ARGS}
" Xl g&n -n 1 advixe-cl -c tripcounts -flop -project-dir -- ${EXE} ${ARGS}: -n <N-1> ${EXE}
* Intel Trace Analyzer and Collector
* At scale MPI performance analyzer

'/ PRINCETON UNIVERSITY

Intel® VTune™ Amplifier's General application
Application Performance Snapshot T profiling kP

MPI Bound Thread-level FPU
MPI Imbalance CPU Bound read-leve
PR serial time underutilization
Inter-ngl + Thread-level stalability issues Paralielization (Vector efficiency
) issues,
performance (OpenMP analysis) :

< ¥

Intel® Trace Analyzer
and Collector _
Intel® Advisor

Intel® MPI Tuner Intel® VTune™ Amplifier Threading Vectorization
CLUSTER NODE \ / CORE

On-node performance

'/ PRINCETON UNIVERSITY

* A quick view into a shared memory or MPI application’s
use of available hardware (CPU, FPU and Memory)

* Identify basic performance optimization opportunities and
the next step for analysis

* Extremely easy to use
* Results shown as HTML format
* Scales to large jobs
* Multiple methods to obtain:
* Free download from APS website:

https:/ /software.intel.com/sites / products/snapshots/a
pplication-snapshot/

* Part of Intel Parallel Studio XE or Intel VTune Amplifier

¥ PRINCETON UNIVERSITY

https://software.intel.com/sites/products/snapshots/application-snapshot/

Application: bench_gtc_SKX_icc

unt per node: 96

5.79s

1.51K
el

9.85%M of Elapsed Time

TOP 5 MPI Functions
Sendrecv

Barrier

Init

Allreduce

Comm_split

ype: Event-based counting driver

Intel(R) Xeon(R) Processor code named Skylake

5391.99

SP.GELOPS

0.30s

5.19% of Elapsed Time

o Resident
BSC(Per node:
547 Per rank:
3.44 Virtual
2.83 Per node:

1.54 Per rank:

/

3

™ @

434143 MB
434143 MB

Your application is memory b(x

Use memory access analysis tools like Intel® VTune™ Amplifier for a detailed metric
breakdown by memory hierarchy, memory bandwidth, and correlation by memory
objects.

un
MPI Time 22.18%R <10% ———
5.19% <10%
4275%R <20% I ———

5.67%R >50%
0.03% <10%

FPU Utilization

42.75%R of pipeline slots

Cache Stalls

45.70 GB/s

FRA

3.7

Run the following command to collect the data and complete the analysis:
mpirun -n <N> aps ${EXE} ${ARGS}
aps -report=${PATH_TO_APS_RESULT_DIR}

5 PRINCETON UNIVERSITY

Main bottleneck
identified and
next steps
suggested

Memory Stalls
measurement
with breakdown
by cache and
DRAM

Excellent
vectorization

-

1V

-

" ANEEEEEEEEEEEEN
EANEEEEEEEEEEEENE
EEEEEEEEEEEEETYEn
ANEEEEEEEEEENEEN
ANEEEEEEEEENEEEN
ENEEEEEEEENEEEEnE
ENEEEEEEE T "EEEEEn
AEEEEEEEE"EEEEEEN
cHENEEEEE"EEEEEEEE
ENEEEE"EEEEEEEEn
ENEEET"EEEEEEEEEnE
ENEE"EEEEEEEEEEn
AN EEEEENEEEEENn
EETEEEEEENEEEEENn

HETEAEEEEEEEEEEEEnE
s ANEEEEEEEEEEEEE
=] r~

(a8 o

_DIR)

PATH_TO_APS_RESULT

P15

Run the following command to get the report:

Rank-to-rank communication matrix
aps-report -g ${

.
5
n
o,
€3]
W
Z
D
Z.
@)
T
&
&)
4
=
==
-

0<

“Ad

4 @ Analysis Target A Analysis Type [Collection Log [Summary & Bottom-up &3 Caller/Callee & Top-down Tree =l Platform

Grouping:| Function / Call Stack

int (change) @

P

INTEL VTUNE AMPLIFIER 2018

3

=1[x][2]
CPUTime v
Function / Call Stack Effective Time by Utilization Instructions R
Spin Time Overhead Time
Idle | Poor Ok Ideal Over
[] ('(' l I [’ate ata chargei$ompSparallel@238 C 0.035s @ 265.604s C) 0s 0s 347,5962(
radial_bin_particlesSompSparallel @64 ((103.815s c) 0s 0s| 67,7145
all_field_esum ((103.129s () 0s 0s| 174,545,7(
pushiSomp3parallel@154 (c 81.941s c) 0s 0s| 175,570,5(
[libiomp5.so] c 00925 D 64.344s 0s 0s| 27,9552
[] Ots Ot _intel_avx_rep_memset [[20.488s 0s 0s 27,3
poisson$ompSparallel_for@362 ((128185) 0s 0s| 18,4254
[vmiinux) 00045 (D 01475 GEEEEEED 12531) 0s 0s 4,930,81
. . poloidal_gtinv ((109355 c) 0s 0s 13,3518
¢ Processor microarchitecture ey : : S : : 5 o T
__svml_cosB_z0 c c 8.664s c) 0s 0s 233100
poloidal_gtinv ((7.2465 0s 0s| 12,566.41
poloidal_mtheta ((6.648s 0s 0s| 12,7974
poloidal_mtheta ((56765 0s 0s| 14,2821
J emory access : : <2ie o o s
D: e = e 8214450usec 8214500usec 8214550usec 8214600usec 8214650usec Ruler Area:
[] 2) =OpenMP Barrier.
£ ome warcerreaa 1+ ... | ¢ . . Sgmen:
forker Thread #1 (| o [iead =
w 1
OMP Waorker Thread #7 (TID. 2 BRunning
e 1/0O o vorar s o [| ...
OMP Worker Thread #22 (I) maSpin and Overhead
OMP Worker Thread #20 (TI. —J ®CPU_CLK_UNHALT
. OMP Worker Thread #19 (TI ¥ CPU Time
. CPU Time ' #aCPU Time
exipble DI
FILTER 1000% 4 | Anvprocess v | Thread AnyThread v | Module AnvModu~ | AnvUtiizatv | | Userisvstem functicv | | Showinline func | Functions onlv_~

* Linux, Windows and Mac OS analysis

GUI

 Link data to source code and assembly

 Easy set-up, no special compiles
Shared memory only

* Serial

¢ OpenMP

* MPI on a single node

'PRINCETON UNIVERSITY

* Basic analysis:
* hotspots: what functions use most time?

* concurrency: identify potential parallelization
opportunities/issues

* Advanced analysis

 advanced-hotspots: extend the hotspots with call stacks,
statistical call counts, CPI metric etc

* general-exploration: hardware-level performance data

* hpc-performance: overview of CPU, memory and FPU
utilization

* memory-access: identify memory-related issues

¥ PRINCETON UNIVERSITY

Use hotspots analysis to find where your program is spending the most time,
ensuring your optimizations have a bigger impact.

& Basic Hotspots Hotspots by CP Ization vieWpqint (change) @ INTEL VTUNE AMPLIFIER 2018
9 @ Analysis Target A Analysis Type [Collecti§in Log & Summary & Botfpm-up @3 Caller/Callee & Top-down Tree {1 Platform [3

Elapsed Time “: 23.977s

CPU Time 1092.999s
Total Thread Count 49
Paused Time 0s

OpenMP Analysis. Collection Time ~: 23.977

Serial Time (outside parallel regions) : 1.366s (5.7%)

Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance

Function Module CPU Time

chargeiompparallel @238 bench_gtc_SKL _icc 312.330s
[libiomp5.s0] libiomp5.s0 278.377s
all_field_esum bench_gtc_SKL_icc ~ 122.999s
radial_bin_particlesompparallel@64 bench_gtc_SKL_icc ~ 116.049s
pushi$ompparallel@154 bench_gtc_SKL_icc 96.2265

Effective CPU Utilization Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU utilization value

@ <l <l
E 2 2
[8 5
8s{ < £!
a El =1
= > Bl
s W 5 2|
o]
2 ~l
8 |

4s 8
= |

w
|
2s !
|
|
0s - . L

0 10 20 30 40 50 60 70 80 90
il Poor Ide Over
0 00

Simultaneously Utilized Logical CPUs

Run the following command to collect the data (remotely) and complete the analysis (locally):
amplxe-cl —collect hotspots ~knob analyze-openmp=true -finalization-mode=deferred -- $<EXE> $<ARGS>
amplxe-cl ~finalize -r $<RESULT_DIR> -search-dir $<OBJS_DIR> -source-search-dir $<SOURCE_DIR>

'/ PRINCETON UNIVERSITY

Use bottom-up view to identify the most time-consuming functions and
analyze their call flow from a function to its parent functions

Grouping: | Function / Call Stack

INTEL VTUNE AMPLIFIER 2018

CPU Time -

CPU Time [«

Function / Call Stack
0 Idle @ Poor

fomp$parallel @238

Effective Time by Utilization v
Ok @Ideal @ Over

] - _ Module Function (Full

bench_gtc_SKL_icc

chargeiompparallel @238

f

Filter by process, thread & other controls

2 PRINCETON UNIVERSITY

A 4

Source File StartAddress

100.0% (312.328s of 312.330s)
bench_gtc_SKL_icclchargeifompSparal..
libiomp5_sol[libiomp5.s0

I Viewing - 1of2 » selected stack(s)

0x41b221

[libiomp5.s0] 278.377s 0 [] 0s 0s libiomp5.so [libiomp5.s0] 0 libiomps.sol[libio
\ all_field_esum 122.999s | 0s 0s bench_gtc_SKL _icc all_field_esum push.c 0x423f41 bench_gtc_SKL_iccl ch point frame]...
radial_bin_particles§omp$parallel@64 116.049s 0s 0s bench_gtc_SKL _icc radial_bin_particles§omp$parallel @64 shifti.c 0x42e76c libiomp5 so![libiomp5.50]+0x853af - [un
pushifomp$parallel@154 96.226s | 0s 0s bench_gtc_SKL_icc pushifomp$parallel@154 push_core.c 0x423ac4 libiomp5.sa[libio +0x5be2 - [u..
__intel_avx_rep_memset 23.8665 (0] 0s 0s bench_gtc_SKL_icc intel_avx_rep_memset 0x459290
for@362 16.471s 0s 0s bench_gtc_SKL_icc poissonfomp$parallel_for@362 poisson.c 0x435561 A
12.957s 0s 0s bench_gtc_SKL _icc poloidal_gtinv bench_gtc.h 0x424b10 W
12.632s 0s 0s bench_gtc_SKL _icc poloidal_gtinv bench_gtc.h Ox4lc2c2
9.731s 0s 0s bench_gtc_SKL _icc __svml_cos8_z0 0x449fa0
I 8.380s || 0s 0s bench_gtc_SKL _icc poloidal_gtinv bench_gtc.h 0x423ead
poloidal_mtheta 7.591s 0s 0s bench_gtc_SKL _icc poloidal_mtheta bench_gtc.h Ox4lclbd
[libc.s0.6] 6.845s || 0s 0s libc.so.6 [libc.s0.6]
poloidal_mtheta 6.821s || 0s 0s bench_gtc_SKL _icc poloidal_mtheta
__svml_sincos8_z0 6.171s 0s 0s bench_gtc_SKL_icc __svml_sincos8_z0
abs_min_real 6.036s 0s 0s bench_gtc_SKL_icc abs_min_real
poloidal_gtinv 3.701s 0s 0s bench_gtc_SKL _icc poloidal_gtinv e
abs_min_real 3.148s 0s 0s bench_gtc_SKL _icc abs_min_real bench_gtc.h 0x424cf2 |
o+ S st 1on it i Vi wa s X Ruler Area:
o || ="OpenMP Barrier-
| OMP Worker Thread #40 (T. to-Barrier Segment
OMP Worker Thread #45 (T. Thread -
OMP Worker Thread #38 (T. M-RUT
OMP Worker Thread #47 (T. V#aCPU Time
OMP Worker Thread #44 (T. ~/#aSpin and Overhea. .
OMP Worker Thread #36 (T. WCFU Sample
OMP Worker Thread #46 (T... ¥/ CPU Uiilization
V@aCPU Time
OMP Worker Thread #34 (T. A aSnin and Overhea
OMP Worker Thread #42 (T..
CPU Utilization
FILTER 100.0% x ‘ Process Anv Process ~ | Thread Anv Thread v Module Anv Module w | Utilization Anv Litilizatio v | Call Stack Mode User functions + 1v Inline Mode Show inline functioiv © Loop Mode Functions onlv hd

Filter by function or loop

View source/asm or both g CPU time

Source Assembly ER

Sou..

Tiee Source

238 #pragma omp parallel
{

240 const int tid
const int nthreads

densityl_par
t 1 =0; 14
sityl_part[i)
#ifdef VECT_CHARGE

251 wreal *densityiv_part =

for (int i = 0; 1
densityiv_part[il]

1

257 #endif
258
259 #pragma omp for schedule(st
260 for (int 1 = 0; 1
261 densityi[i].va
262 }
263 #endif
264
265 #ifdef VECT_CHARGE
266 real wlv[CHARGE_SIMD_WI
267 real w2v[CHARGE_SIMD_WI
268 int 1j1v[CHARGE_SIMD_WI|
269 int 1j2v[CHARGE_SIMD_WI
270 #endif
271
272 #pragma omp barrier
273
274 #pragma omp for
275 for (int mo = 0; mq
276 real *_restriq
277 real *_restrig
278 real *_restri
279 real *_restriq
280 real *_restriqg
281
Sel)

—

PRINCETON UNIVERSITY

B chargeic ¢

Address

0x41b4s2
0x41b485
0x41b487
0x41b487
0x41b48a
0x41b4se
0x41b491
0x41b494
0x41b497
0x41b49d
0x41bdod
0x41b4a0
0x41b4a2
0x41b4a6
0x41b4a9
0x41bdad
0x41b4bo

~ 0x41b4bs

0x41b4bs

= ox41bdbc

0x41b4bf
0x41b4c2
0x41b4cs
0x41b4cs
0Ox41b4cc
0x41b4do
0x41b4d3
0x41bads
0x41b4e0
0x41b4e3
0x41b4e6
0x41b4eg
0x41baf1
0x41bafs
0x41bafd
0x41baff
0x41b501
0x41b501
0x41b505
0x41b509
0x41b50c
0x41b512
0x41b512
0x41b514
0x41b518
0x41b51c
0x41b520
0x41b523
0x41b527
0x41b52a
0x41b52f
0x41b52f
0x41b531
0x41b537

nghlighte.,,

Sou..

Line

246
246

484
251
484
251
251
251
251
251
253
484
253
251
499
499
251
251
253
253

253
253
253
253

260
260

Assembly

test %rad, %rad

jle 0x41b4bS <Block 6=
Block 4:

mov %rl3d, %eax

imul %rl4d, %eax

add %r13d, %eax

movsxd %r13d, Srdx

cmp $0xc, %eax

ile ox4lce2d <Block 129>
Block 5:

movsxd %rldd, Srax

Xor %esl, %esl

imul %rdx, %rax

add %rax, %rdx

shl $0x3, %rdx

mov %rbx, %rdi

callg 0x459290 < intel_avx_rep_memset>
Block 6:

movl Ox628(%rsp), %eax
mov %r13d, %ebx

movsxd %eax, %rax

add %r15d, %risd

imul %eax, %ebx

movg (%rsp), %rdx

imul %ebx, %r1sd

movq (%rdx), %rcx

leal (%r13,%r13,1), %edx
movq %rax, Oxec8(%rsp)
imul %edx, %eax

movsxd %rlSd, %rls
movsxd %ebx, %rbx

movq %rbx, Oxebo(%rsp)
leaq (%rcx,%rls,8), %rdi
movq %rdi, Ox1fos(%rsp)
test %eax, %eax

ile 0x41b52f <Block 9=
Block 7:

imul %rildd, %sedx

leal (%rdx,%rl3,2), %eax
cmp $0xc, %eax

ile Ox4lcddo <Block 121>
Block 8:

xor %esl, %esl

leal (%r14,%rl4,1), %eax
imul %rl3d, %eax

leal (%rax,%rl3,2), %edx
movsxd %edx, %rdx

shl $0x3, %rdx
vzeroupper

callg 0x459290 < intel avx_rep_memset>
Block 9:

test %ebx, %ebx

jle 0x41b6ad <Block 24>
Block 160:

— libiomp5.so![libiomp5

INTELVTUNE AMPLIFIER 2018

CPU Time -

Viewing -~ 1of2 » selected stack(s)
99.9% (252.453s of 252.704s)
bench_gtc_SKL _icclchargeifompS$paral...
libiomp5 .sol[libiomps
libiomp5.so![libiomp5s
bench_gtc_SKL _iccl[<

libiomp5.so![libiomp5

Modern computers have vector registers and SIMD (Single Instruction
Multiple Data) instructions. This allows one CPU to do multiple
calculations at once.

[17 JEs a7 (4]
+ + + + -
=N [63 JC9 (4 [81]

E 50)4) L [8 |

The size of the vector register varies by the architecture. Skylake Server
architecture (at Tigercpu of Princeton) has a vector length of 512 bits (8
doubles or 16 floats)

Single Precision (16) Sp SP SP SP SP SP SP Sp SP SP Sp SP SP sp SP Sp

Double Precision (8) DP DP DP DP DP DP DP DP

“Expertly tune your application” Intel webinar, Carlos Rosales-Fernandez, 2018

PRINCETON UNIVERSITY

e Vectorization Advisor

* Survey: find the vectorization
information for loops and provide
suggestions for improvement

» Trip Counts: generate a Roofline
Chart

* Dependencies: determine if it is
safe to force vectorization

* Memory Access Patterns (MAP):
see how you access the data

* Threading Advisor

» Suitability: predict how well your
proposed threading model will
scale

" PRINCETON UNIVERSITY

o [l Batch mode

» collect | i | L]
[

 cotect | m]

EmoOE
v

b coa | m 1

B0

El Elapsed time: 81.27s

FITER:[All Modules][All Sources ~|

Summary % Survey & Roofline ™ Refinement Reports

Vi tion Advisor

3)

gram metrics
Elapsed Time 81.27s

Vector Instruction Set AVX512, AVX2, AVX, SSE2, SSE

Total GFLOP Count 402,55
Total Arithmetic Intensity @ 0,10793
(V) Loop metrics

Metrics

Total

ues preventing
ivisor Roofline model automation.

Total GFLOPS

¥ MKL det...

Total CPU time
Time in 13 vectorized loops
Time in scalar code

Total GFLOP Count
Total GFLOPS

‘:‘\ Vectorization Gain/Efficie

51,065 N 100.0%
79.625 I 95. 2%

l44s |

402,55 (] 100.0%

4,95

necy Ay

Vectorized Loops Gain/Efficiency @ 5.03x [FESammmS |
Program Approximate Gain @ 4.96x

Top time-consuming loops’

Loop Self Time2 Total Time® Trip Counts®
[loop in mm1 at mm.h:27] 47.680s 47.680s 31: 11
[loop in mm2 at mm.h:39] 16.200s 16.200s 124;1

O [loop in mm3 at mm.h:51] 14.620s 14.620s 124;1

O [loop in mml at mm.h:26] 0.650s 48.330s 1000

O [loop in [MKL BLAS at ?] 0.350s 0.350s 64

Collection details

Number of CPU Threads 1

4.95

Mm
y .

ation analysis toolset that lets you identify loops that will benefit most from
iss nting from effective vectorization and characterize your memo

Are 100p % pede 0 o Are VO o the ectorizatio
N O ed verfo > o MKL hend O i | 1te O a N o
O
Sourc Al TH
B surmary @ Survey & Roofline ™ Refinement Rep*ts
)) — Performan...) Why No Vectofzed Loops
+{[=] Function Call Sites and Loops | & @ Self Timew | Total Time Type :
& P — Issues YP Vectoriza... | vectoWISA Efficiency
= [loop in mm1 at mm.h:27] n * 2 Possibl... | 48.030s 1| 48.030s 1 |Vectorized (Bo _-
= [loop in mm2 at mm.h:39] 16.140s@ 16.140sB Vectorized (Body; ... AVX512 [100% |
=0 [loop in mm2 at mm.h:39] [_} 15.620s@ 15.620s0 Vectorized (Body) AVX512
=" [loop in mm2 at mm.h:39]] 0.520s! 0.520s(Vectorized (Peeled) AVX512
[+ [loop in main at mm.h:51]] 14,810sB 14.810sB Vectorized (Body; ... AVX512
=0 [loop in mml at mm.h:26] 0.640s(48,6705 Il Scalar @innerl...
P
u f mm2 0.2}
a2 f mm3 M 0.1] Seurce | Top Down | Code Analytlcs | Assembly |@ Recommendations |E Why No Vectorization? |
H[FTTo) [loop in main at matmul_test.cpp:104] m @ 4 Assumed ... 0.0]))) Why No \
U§ start — 0.0l Function Call Sites and Loops Total Time % Total Time Self Time | Type NG GCtarieation? J
s main B 0.0 =Total 100.0% HENEEN 81.060s 0.000s!
%5 [loop in main at matmul_test.cpp:102]| [] @1 Assumed ... 0.0f Elfstack] 100.0% EEEEER 81.060s 0.000s[Function
< f mml M 0.01 = _start 100.0% HEESEN 81.060s 0.000s! Function
5(5 [loop in main at matmul_test.cpp:127] m 0.0¢ =_libc_start_main 100.0% M 81.060s 0.000sl Function
=/ [loop in mml at mm.h:25]] 0.0(Elmain 100.0% EEEEEE 81.060s 0.000s[Function
5§ zero_result o] 0.0 =IO [loop in main at matmul_test.cpp:127] 59.7% EEE 48.380s 0.000s[Scalar
<5 [loop in main at m @1 System fu 0I0| =Imm1 59.6% HEE 48.330s 0.000s(Inlined Funct...
p i = =IO [loop in mml at mm.h:25] 59.6% Il 48.330s 0.000s(Scalar inner loop was alr...
D ??' =I5 [loop in mml at mm.h:26] 59.6% Il 48.330s 0.650s(Scalar inner loop was alr...
[+ [loop in mml at mm.h:27] 58.8% BN 47.680s 0.000s[Vectorized (... A
Asgembly | @ Recommendations | @ [HO [loop in main at mm.h:86] 0.1% 1 0.050s 0.000s(Scalar inner loop was alr...
HO [loop in main at matmul_test.cpp:135] 20.4% M@ 16,5008 0.000sl Scalar inner loop was alr...
[+ [loop in main at matmul_test.cpp:141] 18.4% W 14.880s 0.000s[Scalar
Source HO [loop in main at matmul_test.cpp:147] 1.6%! 1.270s 0.000s(Scalar inner loop was alr...
[+ [loop in main at matmul_test.cpp:102] 0.0% [0.030s 0.000s[Scalar vector dependenc...
/72D matrix-matrix multiplication
vold mml(double **A, double **B, double **C, int matrix_size) :
for (int 1 =0 ; 1 < matrix_size; i++) { I
for (int j = 0; j < matrix_size; j++) {
= for (int k = 0; k < matrix_size; k++) { 1.080s 48.030s mmm
BE | source |Top Dvwnl Code Analytics |Auembr, |v i & Why No izati |
Loop in mm1 at mm.h:27 Average Trip Counts: © 31; 1; 1 @ GFLOPS: 2.09732 @
GINTOPS: n/a
Vectorized (sody: pecled: 4 T.6808 AVX-512 Mask Usage: 99%!
remanden) T EE 7 23 © o
AT AVX2; 47.680s 29% Vectorization Efficiency Vectorization Gain Code Optimizations
ainder AVXS12BW 128, Fome rc‘fmr:‘:.t\;znmm)cgln(eua) 64 Compiler for applications
AVX512F_256; e Version: 18.0.2.199 Build 20180210
=0 FI41041 o AT31TL1 % DIL1T41, AVX512F 512 ;I;:iltas hers. tack b i ©] Compiler estimated gain: <2.30x
| t » cathers, Mask HManpuiations Compiler Notes On Vectorization:
* Masked Loop Vectorization
* Unaligned Access in Vector Loop

ry .94) @

» Compute 5% (1850000000, 1.12) @ Compiler Optimization Details:

» Mixed ~ 34% (12500000000, 7.58) SN * LOOP WAS UNROLLED BY 4
Other 43% (15900000000, 9.64) EEES

Run the following command to collect the data (remotely):
advixe-cl -c survey -project-dir $<PROJ_DIR> -no-auto-finalize -- $<EXE> $<ARGS>

y PRINCETON UNIVERSITY

This loop’s scalar count is ~248

Elapsed time: 81.27s [NGIRYEIS{olgr=1s) d | MKL |FILTER:| All Modules v|| All Sources v|| Loops And Functions I ThlS IOOp iS Called 50 mllhon times
summary oy Survey & Roofline "1 Refinement Reports AL I

_ _ Vectorized Loops Compute Performance ¥ Self Ty Counts Instruction Set Analysis
[=] Function Call Sites and Loops = : — Self Al Memo... : Advanc
Vec... Efficiency Gai... |VL (... Self GFL... | FP Mask Utilization (GB) Average | Call Count | Traits Data ... Num.
[loop in mml at mm.h:27] AVX.. 2.33x 8 2.0971 99.0% =] 0.08333 1200.000 31;1; 1 500000... FMA; Gathers; ... " Float... Unrolle
[+ [loop in mm2 at mm.h:39] AKX, 8.21x B 61540 99,0% I 0.07999 1246,400 124;1 500000... FMA Float3...
[loop in mm3 at mm.h:51] AVX.. 10.... 8 6.8261 99.0% T 0,08333 11597.600 124;1 500000... FMA Float3... Interch:
loop in mml at mm.h:26] 3.7690 100.0% T 0.87500 2,800 1000 50000 Permutes Float...
H 1.0710 50.0% O 0.20000 1.500 50 FMA Float...
IE f mm3 0.8001 25.0% 3 0.12500 1.600 FMA Float...
40 [loop in main at matmul_test.cpp:104] |e... 0.0671 0.01667 0.120 1000 1000 Divisions; Type Co... Float...
u f _start < 0.001 1
s f main 0.00272 = 0.001 1 FMA; Gathers; Per... Float...
40 [loop in main at matmul_test.cpp:102] |e... = 0.001 1000 1
4 f mml < 0.001 1 FMA; Gathers; Per... Float...
Elapsed time: 81.27s |[NURRY-Tadelgra=1s| Not Vectorized | MKL |FILTER:| All Modules v|| All Sources v|| Loops And Functions v|| All Threads

Summary % Survey & Roofline |™f Refinement Reports

klQ B - |cores:| 1 = o [Y Default: FLOAT « | [% No Results to Compare - ’

100

T T
0.01 0.1 1 10
Physical Cores: 96 @ App Threads: 1 @ Self Elapsed Time: 47.680 s Total Time: 47.680 s

Run the following command to collect the data (remotely):
advixe-cl —c tripcounts -flop -project-dir $<PROJ_DIR> -no-auto-finalize -- $<EXE> $<ARGS>
Note: it is important to use the same project directory as the survey analysis

5 PRINCETON UNIVERSITY

* Optimizing HPC Applications with Intel® Cluster Tools,
Alexander Supalov; Andrey Semin; Michael Klemm;
Christopher Dahnken, Apress, 2014

* https:/ /software.intel.com/en-us/application-snapshot-user-
guide
 https://software.intel.com/en-us/vtune-amplifier-cookbook

 https://software.intel.com/en-us/advisor/documentation/view-
all

'/ PRINCETON UNIVERSITY

https://software.intel.com/en-us/application-snapshot-user-guide
https://software.intel.com/en-us/vtune-amplifier-cookbook
https://software.intel.com/en-us/advisor/documentation/view-all

* Goal: Identify hotspots in sample code

 Targets for optimization

* Test code has 4 functions: mm][1-4]

* Each does a different version of matrix-matrix multiplication C=A X B

 Each function is called 50 times
* Where should we optimize?

'/ PRINCETON UNIVERSITY

Enable X11 forwarding

* “ssh -Y -C <user>@adroit.princeton.edu
* Will need local xserver (XQuartz for OSX, Xming for Windows)

Clone the repo

git clone https://github.com/beiwang2003/Bootcamp2018-Perf-Tuning.git

Follow instructions in repo Readme.md

What functions are most/least expensive?

>What are the vectorization efficiency of each loop?

>} if you have extra time

‘537 PRINCETON UNIVERSITY

