Statistical Graphics Considerations

Bootcamp 2018

Instructor:
Dawn Koffman, Statistical Programmer Office of Population Research (OPR) Princeton University

Statistical Graphics Considerations

Why this topic?

"Most of us use a computer to write, but we would never characterize a Nobel prize winning writer as being highly skilled at using a word processing tool.

Similarly, advanced skills with graphing languages/packages/tools won't necessarily lead to effective communication of numerical data.

You must understand the principles of effective graphs in addition to the mechanics."

Jennifer Bryan, Associate Professor Statistics \& Michael Smith Labs, Univ. of British Columbia. http://stat545-ubc.github.io/block015 graph-dos-donts.html
a core feature of scientific practice from start to finish.
All aspects of the research process from the initial exploration of data to the effective presentation of a polished argument can benefit from good graphical habits.
... the dominant trend is toward a world where the visualization of data and results is a routine part of what it means to do science."

> But ... for some odd reason
" ... the standards for publishable graphical material vary wildy between and even within articles - far more than the standards for data analysis, prose and argument.

Variation is to be expected, but the absence of consistency in elements as simple as axis labeling, gridlines or legends is striking."

What is a statistical graph?

"A statistical graph is a visual representation of statistical data.
The data are observations and/or functions of one or more variables.

The visual representation is a picture on a two-dimensional surface using symbols, lines, areas and text to display possible relations between variables."

A statistical graph allows us to...

- see the big picture

Graphs reveal the big picture: an overview of a data set.
An overview summarizes the data's essential characteristics, from which we can discern what's routine vs. exceptional.

- easily and rapidly compare values

Graphs make it possible to see many values at once and easily and rapidly compare them.

- see patterns among values

Graphs make it easy to patterns formed by sets of values.
For example, patterns may describe correlations among values, how values are distributed, or how values change over time.

- compare patterns among sets of values

Graphs let us compare patterns found among different sets of values.

- explore and understand data by accurately representing it
- allow viewer to easily see comparisons of interest (including trends)
- communicate results in a clear and memorable way
how to do this is somewhat subjective ...
- few hard and fast rules
- many trade-offs
- many guidelines which some may disagree with
- iterative process is often helpful
... design and "build" multiple version of "same graph"
purpose of this session is to encourage you to consider
- techniques
- guidelines
- tradeoffs

One more thing ... a disclaimer ...

Let me state clearly ... I intend no criticism of graph authors, either individually or as a group.
Shortcomings show only that we are all human, and that under the pressure of a large, intellectually demanding task like designing and building a statistical graph it is much too easy to do things imperfectly. Additionally, many design considerations involve trade-offs, where there may be, in fact, no "best" solution.

Lastly, I have no doubt that some of the "better graphs" I show will provide "bad" examples for future viewers - I hope only that they will learn from the experience of studying them carefully.

Session Organization

Preface Why this topic?

What is a statistical graph?

Introduction
Tables vs graphs (When)

Audience and setting (Where)
II Representing data accurately
III Highlighting comparisons of interest

Simplicity and clarity

V Summary

VI Conclusions

Tables vs Graphs

tables: look up individual, precise values

graphs: see overall distribution (shape, pattern) of data make comparisons perceive trends
often more useful when working with large sets of data

A graph trying to also serve as a look-up table ...

Percent Annual Increase in National Health Expenditures (NHE) per Capita vs. Increase in Consumer Price Index (CPI), 1980-2012

SOURCE: Kaiser Family Foundation calculations using NHE data from Centers for Medicare and Medicaid Services, Office of the Actuary,
National Health Statistics Group, at http://www.cms.hhs.gov/NationalHealthExpendData/ (see Historical; National Health Expenditures by type of service and source of funds; file nhe12.zip), and CPI data from Bureau of Labor Statistics at
$\mathrm{ftp}: / / \mathrm{ftp}$. bls.gov/pub/special.requests/cpi/cpiai.txt (All Urban Consumers, All Items, 1982-1984=100, Not Seasonally Adjusted, U.S. city average).

A much nicer way to show a graph and table ...

Average Monthly Temperatures (${ }^{\circ} \mathrm{F}$)

Anscombe's Quartet

4 data sets that have
nearly identical summary statistics
each has 11 non-missing pairs of values
constructed in 1973 by statistician Francis Anscombe to demonstrate importance of graphing data and effect of outliers

Set 1		Set 2		Set 3		Set 4		
x	y	x	y	x	y		x	y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58	
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76	
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71	
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84	
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47	
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04	
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25	
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50	
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56	
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91	
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89	

SUMMARY STATISTICS

mean value of x	9	9	9	9
mean value of y	7.5	7.5	7.5	7.5
variance of x	11	11	11	11
variance of y	4.1	4.1	4.1	4.1
correlation between x and y	0.816	0.816	0.816	0.816
linear regression (best fit) line is:	$y=0.5 x+3$	$y=0.5 x+3$	$y=0.5 x+3$	$y=0.5 x+3$

hard to see the forest when looking at the trees

Life expectancy at birth by access to safe water, 1998

graph allows simple visual examination of effect of outlier on model summary

US States: percent of population under age 16, 2000-2010

State	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	region
Alabama	22.35	22.18	22.03	21.83	21.74	21.58	21.39	21.29	21.17	21.04	20.84	3
Alaska	26.59	26.03	25.7	25.15	25.04	24.59	24	23.97	23.44	23.32	23.25	4
Arizona	23.81	23.72	23.63	23.56	23.43	23.33	23.17	23.09	23.04	22.8	22.62	4
Arkansas	22.36	22.21	22.14	22.13	22	21.97	21.86	21.76	21.7	21.61	21.59	3
California	24.39	24.16	23.94	23.75	23.52	23.23	22.91	22.59	22.34	22.09	21.94	4
Colorado	22.72	22.64	22.49	22.43	22.21	22.17	22.03	21.92	21.8	21.74	21.67	4
Connecticut	22.13	22.02	21.83	21.67	21.57	21.27	20.9	20.64	20.33	20.13	19.99	1
Delaware	22.14	21.86	21.71	21.64	21.3	21.07	20.72	20.64	20.59	20.07	19.89	3
District of Columbia	18.01	17.74	17.98	18.1	17.78	16.75	16.29	15.85	15.34	15.71	14.74	3
Florida	20.25	20.13	20.02	19.86	19.73	19.58	19.41	19.2	19.02	18.82	18.68	3
Georgia	23.61	23.58	23.58	23.55	23.42	23.46	23.26	23.24	23.11	22.89	22.79	3
Hawaii	21.58	21.37	21.13	20.94	20.72	20.57	20.15	20.14	20.05	19.97	19.79	4
Idaho	25.1	24.92	24.7	24.58	24.5	24.58	24.37	24.45	24.51	24.58	24.44	4
Illinois	23.23	23.1	22.96	22.83	22.64	22.43	22.18	21.97	21.78	21.61	21.47	2
Indiana	22.95	22.89	22.77	22.66	22.62	22.47	22.36	22.23	22.16	22.03	21.88	2
lowa	22.02	21.83	21.71	21.58	21.46	21.36	21.29	21.24	21.25	21.17	21.08	2
Kansas	23.39	23.21	22.99	22.95	22.79	22.62	22.44	22.56	22.51	22.59	22.7	2
Kentucky	21.71	21.66	21.59	21.5	21.35	21.25	21.12	21.09	21.1	20.92	20.89	3
Louisiana	23.97	23.65	23.39	23.16	22.96	22.72	22.01	22.01	22.05	21.95	21.79	3
Maine	20.83	20.53	20.14	19.82	19.48	19.18	18.88	18.61	18.56	18.05	18.07	1
Maryland	22.76	22.66	22.48	22.27	22.1	21.83	21.5	21.17	20.91	20.72	20.58	3
Massachusetts	21.11	20.98	20.79	20.63	20.37	20.1	19.77	19.53	19.32	19.1	19	1
Michigan	23.24	23.04	22.86	22.65	22.46	22.22	21.86	21.54	21.21	20.95	20.72	2
Minnesota	23.04	22.84	22.57	22.36	22.23	22.05	21.79	21.64	21.56	21.45	21.37	2
Mississippi	24.09	23.83	23.61	23.47	23.33	23.19	22.96	22.88	22.76	22.68	22.32	3
Missouri	22.54	22.35	22.17	21.98	21.82	21.64	21.5	21.33	21.22	21.07	20.98	2
Montana	22.23	21.83	21.38	20.98	20.65	20.43	20.36	20.31	20.08	20.02	19.68	4
Nebraska	23.05	22.91	22.86	22.77	22.76	22.71	22.5	22.49	22.38	22.34	22.3	2

US state trends for percent of population under age 16, 2000-2010

Source: 2000-2010 State Characteristics Intercensal Population Estimates File, US Census Bureau, Population Division.
audience and purpose ... differences may lead to different design decisions
yourself
to check data correctness
to examine a variable distribution, outlier values, relationships with other variables to examine model fit
others
to display distributions/relationships of variables that are important to your results ("your story")
to most accurately and most clearly present your results

- experts vs novice in subject matter? (use acronyms or abbreviations as axis labels?)
- experts vs novice at interpreting statistical graphs?
consider graph's setting ...
presentation ... limited time ... CLARITY, CLARITY, CLARITY
... some audience members sitting farther away:
larger font size, higher contrast, brighter colors, axis labeling at top, etc.
class ...limited time
poster session ... more time plus possible interaction with author
(but usually little text) ... graphs need to be able to "stand on their own"
print journal article, book, report ... possibly more time plus full text,
but may be limited by publication constraints such as
graph size, number, color and resolution
... may be able to provide more details in an appendix
web (online article, book, report or blog post) ... possibly more time plus full text usually less limited by publication constraints
... usually can provide links to further detail

II Representing data accurately

"The representation of numbers, as physically measured on the surface of the graphic itself, should be directly proportional to the quantities represented."

Edward Tufte
"Visual connections should reflect real connections." Hadley Wickham
"Avoid distorting what the data have to say."
Edward Tufte

Life Expectancy in the Americas, by Country, 2012

Life Expectancy in the Americas, by Country, 2012

Life Expectancy in the Americas, by Country, 2012

Source: 2012 World Population Data Sheet by Pop. Ref. Bureau

Fig 4.22 Mountain Height Data: Line Graph
line graphs need interval scales for slopes to be meaningful ...
does it make sense to use a line graph when showing values for a nominal variable?

Fig 4.24 Mountain Height Data by Continent

do not change scale part way along an axis:

consider when to use two (dual) scales for the same axis ...
two scales measuring the same data with different labels:

two scales showing two variables on the same graph ???

is the slope of one curve relative to the slope of the other curve meaningful?
is the intersection point meaningful?
a possible alternative?

Nigeria: Life Expectancy and Population

stackoverflow.com response by Hadley Wickham:
Q: How can ggplot2 be used to make plot with 2 axes, one on left, another on right?

A: "It's not possible in ggplot2 because I believe plots with separate y scales (not y scales that are transformations of each other) are fundamentally flawed.

- They are not invertible: given a point on the plot space, you can not uniquely map it back to a point in the data space.
- They are relatively hard to read correctly compared to other options.
- They are easily manipulated to mislead: there is no unique way to specify the relative scales of the axes, leaving them open to manipulation.

Life Expectancy in the Americas, by Country, 2012

Source: 2012 World Population Data Sheet by Pop. Ref. Bureau
pop2012 value mapped to radius of bubble ... doubling value results in quadrupling area!

Life Expectancy in the Americas, by Country, 2012

Source: 2012 World Population Data Sheet by Pop. Ref. Bureau
pop2012 value mapped to area of bubble ... Canada = 35, US=314 (about 9 times more)
over-plotting hides data points

Crude Birth Rate by Crude Death Rate, for US Counties, 2012
techniques to accurately display data density include:
adjust point size adjust point fill adjust point shape

Source: CO-EST2012-alldata: US Census Bureau, Population Division
use data stratification use point jittering
adjust point size
Crude Birth Rate by Crude Death Rate, for US Counties, 2012

Source: CO-EST2012-alldata: US Census Bureau, Population Division
adjust point fill
Crude Birth Rate by Crude Death Rate, for US Counties, 2012

Source: CO-EST2012-alldata: US Census Bureau, Population Division
adjust point size and fill

Crude Birth Rate by Crude Death Rate, for US Counties, 2012

Source: CO-EST2012-alldata: US Census Bureau, Population Division
adjust point shape
Crude Birth Rate by Crude Death Rate, for US Counties, 2012

Source: CO-EST2012-alldata: US Census Bureau, Population Division

Crude Birth Rate by Crude Death Rate, for US Counties, 2012

Source: CO-EST2012-alldata: US Census Bureau, Population Division

Crude Birth Rate by Crude Death Rate, for US Counties, 2012

Source: CO-EST2012-alldata: US Census Bureau, Population Division
use point jittering - moving overlapping points a bit

- trade-off: sacrifice positional precision for more accurate display of data density

III Highlighting comparisons of interest

"At the heart of quantitative reasoning is a single question:
Compared to what?"

- Edward Tufte

Highlight comparisons

1. Determine true quantity (or quantities) of interest, for example ...

- magnitude of A and magnitude of B ?
or
- difference between magnitude of A and magnitude of B ?
or
- ratio of magnitude of A to magnitude of B?

2. Make sure the data is easily seen

- size, contrast, not hidden by other data markers (points, lines, areas), labels, legends, tick marks, or gridlines

3. Show the data, not just summary measures, when possible
4. Involve perceptual tasks high on Cleveland's list of performing accurate judgements

- position along a common scale
- position along identical, non-aligned scales
- length
- angle, slope
- area
- color

5. Consider proximity, alignment and ordering
determine true quantity of interest

To show the difference between A and B, graph the difference between A and B. You may want to graph A and B on their own too, but don't stop there.

Fig 2.15 Playfair's Balance-of-Trade Data:
Imports Minus Exports
show imports and exports to and from England
to show balance of trade, imports - exports, graph that also

sometimes surprisingly difficult to calculate the difference between curves:
Fig 2.16 Difference Between Curves

don't ask viewers to do extra work

Racial, Ethnic Wealth Gaps Have Grown Since Great Recession

Median net worth of households, in 2013 dollars

[^0]Pew Research Center Fact Tank. December 12, 2014. Wealth inequality has widened along racial, ethnic lines since end of Great Recession. http://www.pewresearch.org/fact-tank/2014/12/12/racial-wealth-gaps-great-recession/

Fig 6.4 Data That Are Difficult to See
show the data - make sure it can be easily seen.
consider:

- size
- contrast
- overplotting
- hidden by tick marks, legends, labels, gridlines, reference lines, text annotations

show the data, not just summary measures, when possible

show the data - display and compare distributions of continuous variables.
how?
- box plot
- violin plot
- histogram
- density diagram
why?
look for shape of distribution: normal, uniform, bi-modal, skewed, etc.
also look for outliers, data errors, missing data
understand data before modeling
box plot: box showing median, iqr and contiguous values up to 1.5 times upper and lower quartiles

Country TFRs: Density Distribution, Median and IQR by Area, 2012 violin plot: symmetric shape showing density of data values

5
$\stackrel{8}{4}$
$\stackrel{8}{4}-$
3
2
2
1

Country TFRs: Density Distribution, Median and IQR by Area, 2012

Country TFRs: Density Distribution, Median and IQR by Area, 2012

histogram: frequency shows number of values within each bin of continuous values

Distribution of Country TFRs by Area, 2012

density curve: similar to histogram, but is smooth and continuous

violin plot: symmetric shape showing density of data values

Density curve: similar to histogram, but is smooth and continuous

violin plot: symmetric shape showing density of data values

1. Position along a common scale $\mid: \therefore: \therefore:^{8}$

2. Length

3. Angle-slope

4. Area

5. Color hue and color intensity \square

Involve perceptual tasks high on William Cleveland's list of performing accurate judgements.
"Order is based on the theory of visual perception, on experiments in graphical perception, and on informal experimentation."

- William S. Cleveland, The Elements of Graphing Data, 1985.

Pie charts may be the most criticized graph form, but are surprisingly common.

They encode values in angles and areas, which are hard for humans to judge.

It is easier to judge position along a common scale, which is why many think dot plots are more effective than pie charts.

Fig 1.1 Similar Pie Wedges

angle/area

Fig 1.2 Similar Pie Wedges: Dot Plot

position along a common scale

Fig 1.3 Similar Pie Wedges: Table

A	23.0
B	22.0
C	19.5
D	18.5
E	17.0
Total	100.0

Fig 2.1 Structured Data Set

Fig 2.2 Structured Data Set: Dot Plot

Mobile OS Share (September 2014)

"A table is nearly always better than a dumb pie chart; the only worse design than a pie chart is several of them for then the viewer is asked to compare quantities located in spatial disarray both within and between pies Given their low data-density and failure to order numbers along a visual dimension, pie charts should never be used."

- Tufte, The Visual Display of Quantitative Information,1983, page 178.
"Pie charts have severe perceptual problems. Experiments in graphical perception have shown that compared with dot charts, they convey information far less reliably. But if you want to display some data , and perceiving the information is not so important, then a pie chart is fine."
- Becker and Cleveland, S-Plus Trellis Graphics User's Manual. 1996.

Pie charts are bad! Die pie chart, DIE

Pie charts are bad when you want to accurately compare two numbers

But:

As good as bars for estimating percentage of whole.
Better than bars for comparing compound proportions ($\mathrm{A}+\mathrm{B}$ vs $\mathrm{C}+\mathrm{D}$)
I. Spence. No Humble Pie: the Origins and Usage of a Statistical Chart. Journal of Educational and Behavioral Statistics, 30:353-368, 2005.

Favourite social media channel

Favourite social media channel

perceptual tasks - using length vs position along a common scale
Fig 8.13 Car Production: Trellis Panels
Fig 8.12 Car Production: Stacked Bar Chart

trends for categories on left and right are easy to see, but trends for categories in middle are hard to judge
stacked bar charts: difficult to decode because they lack a common baseline for judging length

Humans are fairly good at comparing differences in length, but only when things share a common reference point. (Cleveland, William S. and Robert McGill. "Graphical Perception and Graphical Methods for Analyzing Scientific Data." Science 229.4716 (1985): 828-833.

when to use, or not use, stacked bar charts? importance of a common baseline for comparisons.

color dimensions: hue, chroma, luminance (hcl)

use color dimensions

- to distinguish groups
- to highlight particular data
- to encode quantitative values
only vary color for a reason

Source: Stinebrickner and Stinebrickner (2013).
hue is unordered and not perceived quantitatively ... usually a poor choice for indicating magnitude
how to order these colors from smallest to largest??

Two ways to encode quantitative data using color

- sequential scale:
single hue where color varies from light to dark
or
single hue where color varies from pale to pure
- diverging scale: two hues with a neutral color in between, where each hue varies from light to dark or pale to pure
use hue to distinguish groups
use equally spaced hues along color wheel, for example:

use color to highlight
* UNNEEDED EMPHASIS


```
STRATEGIC EMPHASIS
```


via Data + Design, $\underline{\text { https://infoactive.co/data-design/titlepage01.html }}$

use color to encode quantitative information

> use a single hue where color varies from light to dark or pale to pure

use color to encode quantitative information
use two hues with a neutral color in between, where each hue varies from light to dark or pale to pure to create a diverging scale

proximity - grouped bar charts are difficult because it's hard to make comparisons between values that aren't near each other ... try to put values to be compared near each other

- hard to compare data for each group (males, both, females) across countries, because other bars get in the way
- non-zero baseline (again)

Life expectancy at birth, top 10 OECD countries

Life Expectancy at Birth

ease comparisons - align things vertically

Life Expectancy Histogram - Male

ease comparisons - use common axes

Life Expectancy Histogram - Female

Life Expectancy Histogram - Male

Life Expectancy Histogram - Male

ordering - don't sort alphabetically

relationships among subsets
consider having two continuous variables, plus a third categorical variable. how to compare the relationships both within and between categories ?
small multiples: "a series of graphics, showing the same combination of variables, indexed by changes in another variable."

- Edward Tufte
a graph showing small multiples (sometimes called a trellis, lattice, grid, panel or facet graph) shows a series of small graphs displaying the same relationships for different subsets of data.
"Small multiple designs, multivariate and data bountiful, answer directly by visually enforcing comparisons of changes, of the differences among objects, of the scope of alternatives. For a wide range of problems in data presentation, small multiples are the best design solution." - Edward Tufte, Envisioning Information, p. 67.

Fig 6.7 Superposed Data Sets 2

Fig 6.8 Avoiding Superposed Data

R graph Catalog by Jennifer Bryan: http://shinyapps.stat.ubc.ca/r-graph-catalog

US state trends for percent of population under age 16, 2000-2010

Source: 2000-2010 State Characteristics Intercensal Population Estimates File, US Census Bureau, Population Division.

Using the same axis scale and keeping proximity, alignment and ordering in mind, allows for easy comparisons both within and between the small multiples.
small multiples

- countries ordered by most recent data point rather than alphabetically
- scale labels on outer edges only, rather than one set per panel
- only used three labels for the 11 years on the plot
- did not overdo the vertical scale either
-extra large scale used for top row. This doesn't follow principle of small multiples but draws attention to the top left corner.

The average amount of liquor consumed by a person of drinking age
Shots per week of any spirit

Points vs Opponent Points for each NBA Team in 2013 sorted by Pearson Correlation

Average Annual Change in Mean Family Income, 1950-2010, by Quintile and for the Top 5 Percent

Source: U.S. Census Bureau, Historical Income Tables, Table F-3 for 1966 to 2010 , and derived from Tables F-2 and F-7 for 1950 to 1965. Downloaded from http://www.census,gov/hhes/www/income/data/historical/families/ on July 11,2012
PEW RESEARCH CENTER

Fig 5.4 Barley Data
classic example: Cleveland's use of small multiples allowed easy detection of data entry error

R graph Catalog by Jennifer Bryan: http://shinyapps.stat.ubc.ca/r-graph-catalog

4 variables shown month number (x)
measure (y)
state
group

Months since Hurricane Sandy
use common scales to facilitate comparison across small multiples

Group 1

Group 3

Group 2

Group 4

IV Simplicity and clarity

"Chart junk can turn bores into disasters, but it can never rescue a thin data set." - Edward Tufte
"Non-data components of tables and graphs should be displayed just visibly enough to perform their role, but no more so, for excessive salience could cause them to distract attention from the data."

- Stephen Few

Tufte, E. The Visual Display of Quantitative Information, Second Ed. Graphics Press, Cheshire CT. 2001.
Few, S. http://www.perceptualedge.com/articles/visual business intelligence/rules for using color.pdf

Impact of Fluctuating Gas Prices on Customer Behavior


```
to simplify and increase clarity, consider:
eliminating legend and labeling directly eliminating colored shapes on lines, but
keeping endpoints that are key to the message eliminating distractions
- background shading
- gridlines
- border
```


Impact of Fluctuating Gas Prices on Customer Behavior

$\%$ of people who say they practice behavior due to fluctuating gas prices

also, align labels on y axis ... show same number of places to right of decimal point

information

Percent Annual Increase in National Health Expenditures (NHE) per Capita vs. Increase in Consumer Price Index (CPI), 1980-2012

SOURCE: Kaiser Family Foundation calculations using NHE data from Centers for Medicare and Medicaid Services, Office of the Actuary
National Health Statistics Group, at http://www. cms.hhs.gov/NationalHealthExpendData/ (see Historical; National Health Expenditures by type of service and source of funds; file nhe12 zip), and CPI data from Bureau of Labor Statistics at
$\mathrm{ftp} / / / \mathrm{ftp} . \mathrm{bls}$. Rov/pub/special. requests/cpi/cpiai.txt (All Urban Consumers, All Items, 1982-1984=100, Not Seasonally Adjusted, U.S. city average).

- when possible, use direct labeling rather than legends
- don't use too many tick marks or axis labels
- show x axis labels in upright position
- don't repeat dollar signs or percent signs

SOURCE: Kaiser Family Foundation calculations using NHE data from Centers for Medicare and Medicaid Services, Office of the Actuary,
National Health Statistics Group, at http://www. cms.hhs.gov/NationalHealthExpendData/(see Historical; National Health Expenditures by type of service and source of funds; file nhe12.zip), and CPI data from Bureau of Labor Statistics at
ftp://ftp,bls.gov/pub/special, requests/cpi/cpiai.tat (All Urban Consumers, All Items, 1982-1984=100, Not Seasonally Adjusted, U.S. city average).

- when possible, use direct labeling rather than legends
- don't use too many tick marks or axis labels
- show x axis labels in upright position
- don't repeat dollar signs or percent signs
typically, put outcome variable on vertical (y axis)
but, consider putting outcome variable on x axis if that makes long labels easier to read

don't show more decimal places than necessary in axis labels
why show 3 decimal places when only 2 are used? consideration even more important when displaying small multiples where axis labels are repeated

Months since Hurricane Sandy

- use axis labels with units in thousands or millions rather than axis labels having long strings of zeros - use axis title to indicate units
axis titles give reader a summary description of variable being displayed - include unit (percent, dollars, thousands, millions)

reduce clutter ...
- remove x axis title "Year"
- one legend (upper left)
- two y axis titles (left graphs only?)

Group 1

reduce clutter ...

- remove x axis title "Year"
- one legend (upper left)
- two y axis titles (left graphs only?)
- why change color and pattern?

$$
\sqrt{v}
$$

don't vary two visual dimensions, when varying one will do
"The number of 'information-carrying' visual dimensions should not exceed the number of dimensions in the data."

- Edward Tufte

Group 1

Group 3

Group 2

Group 4

reduce clutter ...

- remove x axis title "Year"
- one legend (upper left)
- two y axis titles (left graphs only?)
finally ... use common x and y scales to enable comparisons both within and between small multiples

Group 1

Group 2

Group 3

Group 4

but what is uncommon? depends on the viewer

Fig. 2. Sample sizes from the 12 studies (in total, 3866 people participated, of whom 1677 (43\%) completed a follow-up survey): initial and follow-up , initial only

SOURCE: Kaiser Family Foundation calculations using NHE data from Centers for Medicare and Medicaid Services, Office of the Actuary,
National Health Statistics Group, at http://www. cms.hhs.gov/NationalHealthExpendData/(see Historical; National Health Expenditures by type of service and source of funds; file nhe12.zip), and CPI data from Bureau of Labor Statistics at
ftp://ftp,bls.gov/pub/special, requests/cpi/cpiai.tot (All Urban Consumers, All Items, 1982-1984=100, Not Seasonally Adjusted, U.S. city average).

- consider using a reference line to show an important value across an entire graph if it won't interfere with displaying the data
- is x axis title (year) needed ?

sometimes a few words are helpful use text to highlight or explain

annotate with text

why are y axis labels laying on their sides??

"upright " y axis labels

provide context
showing too few data points can sometimes give the wrong impression ("two data points do not define a trend"), especially for measures that vary cyclically

Month
provide context
National Infant Mortality Rate (IMR) per 1,000 Live Births, 2014

Lauren Gaydosh, Sociology PhD candidate, OPR Notestein seminar, September 2014.
lastly, consistency ...
within and between graphs
be careful when there are multiple authors and multiple tools are used
axis label and axis title fonts, color, axis label orientation, ...
let the data stand out by eliminating decoration
animation created by Darkhorse Analytics shows how communication can be greatly enhanced by eliminating clutter and de-emphasizing supporting elements.
Every aspect of a figure should be there on a "need to have it" basis.
https://speakerdeck.com/player/87bb9f00ec1e01308020727faa1f9e72\#

Remove to improve (the data-ink ratio)

V Summary

Summary of Statistical Graphics Considerations

Choice of table vs graph

- focus on the forest or the trees

Audience and Setting

Correctness

- scale considerations
- for bar graphs, include natural baseline (usually 0), because relative length of bars is basis for comparison
- for line graphs, need an interval scale, otherwise relative line segment slopes are meaningless
- graphs with dual scales show meaningless points of intersection and meaningless relative slopes, unless two scales are simply two names for the same value
- for circles (bubbles), use area not radius to represent magnitude of values
- data density and data hiding considerations (overplotting)
- consider point size, fill, shape, transparency, and data stratification
- use jittering to sacrifice positional precision for more accurate display of data density

Summary of Statistical Graphics Considerations

Comparisons

- determine true quantity of interest
- difference/ratio between A and B rather than A and B
- absolute difference or percent difference
- make sure data is easily seen
- size of data markers and contrast against background
- not hidden by other data markers (points, lines, areas), labels, legends, tick marks, or gridlines
- show the data, not just summary measures, when possible
- for continuous data, consider box plots, violin plots, histograms or density plots to compare groups
- involve perceptual tasks high on Cleveland's list of performing accurate judgments
- position along a common scale
- position along identical, non-aligned scales
- length
- angle, slope
- area
- color
- consider proximity, alignment and ordering

Summary of Statistical Graphics Considerations

Comparisons

- dot plots rely on judgment of position along a common scale
- small multiples rely on judgment of position along identical, non-aligned scales
- bar charts rely on judgment of length
- stacked bar charts ... difficult without a common baseline
- grouped bar charts ... difficult when bars are not adjacent (proximity)
- pie charts rely on judgment of angle
- bubble charts rely on judgment of area
- use color for a reason:
- to indicate groups (via hue)
- to highlight particular data (via hue or intensity)
- to encode quantitative data (via intensity)

Summary of Statistical Graphics Considerations

Simplicity:

- don't use too many tick marks or axis labels
- don't repeat dollar signs or percent signs in axis labels
- don't display more decimal places than necessary in axis labels
- don't use long strings of zero's in axis labels
- when possible, use direct labeling rather than legends
- consider whether axis titles are necessary
- in graphs showing small multiples, repeat axis labels, axis titles and legends only where needed
- don't use background shading
- consider whether borders and gridlines are needed
- don't vary multiple visual dimensions, when varying one will do
- beware of default decoration provided by packages

Clarity:

- don't let data labels obscure data
- show axis labels in upright position
- include units in axis titles
- consider whether abbreviations and acronyms are familiar to audience
- consider using reference lines
- annotate with text to highlight or explain
- provide context for data
- be consistent both within and between graphs

Above all else: let the data stand out

VI Conclusions

"Graphical excellence is the well-designed presentation of interesting data. It consists of clarity, precision and efficiency."

\author{

- Edward R. Tufte
}
"Pair the depth and clarity of your data, models and writing with visualizations that are just as clear and compelling."
- Jonathan A. Schwabish
"Don't skimp on graphs, they're worth the investment."
- Matthew J. Salganik
(verbal communication)

Tufte, E. The Visual Display of Quantitative Information, Second Ed. Graphics Press, Cheshire CT. 2001. Schwabish, J. An Economist's Guide to Visualizing Data, Journal of Economic Perspectives, Winter 2014.

[^0]: Notes: Blacks and whites include only non-Hispanics. Hispanics are of any race. Chart scale is logarithmic; each gridline is ten times greater than the gridline below it. Great Recession began Dec. '07 and ended June '09.
 Source: Pew Research Center tabulations of Survey of Consumer Finances public-use data
 PEW RESEARCH CENTER

