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B-Spline Basics - What you need to know for 
COIL_SPLINE implementation in STELLCOPT 

Neil Pomphrey - July 2020


The notes below are distilled from two good sources: 
C-K Shene: https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/ 
and 
https://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node2.html 

• An order �  (degree � )  B-spline curve is formed by joining several pieces of 

polynomials with at most �  continuity at the breaking points.


• A set of �  non-descending break points �  defines a knot 

vector � . The �  are called knots and the range/scale of the �  is 

irrelevant. Conventionally the range is [0:1].


• A B-spline curve �  is a linear combination of control points  �  and B-spline basis 

functions �  :                                                                                     


�    .


• It is required that     �   �  The # of knots = the # of control points + � 


• Each knot span   �   is mapped onto a polynomial curve between 

successive joints   �   and   � .
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End Point Control


• Generally, B-spline curves do not pass through the two end control points


• However, if a knot has multiplicity �  (it is repeated �  times) the curve will 

coincide with the control polygon at that knot.


• Repeating the knots at the end points �  times will force the end points of the 

curve to coincide with the control polygon and to be tangent to the first and last legs 

of the control polyline.  This is illustrated in the Fig below, stolen from https://

web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node2.html where �  

and � . The knot vector (assuming uniform spacing) would be       

�                                                         

This is called "coil clamping".
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• This is important for our STELLCOPT application because there is a constraint on 
the beginning and end of each modular coil winding due to periodicity in real space. 
We must ensure that v at u=0 has the same value as v at u=1.  This can be achieved 

for our cubic spline representation of the u-v coil curve by constraining �  and 

choosing  �  at the knot end points �  and �  .


• Tangency to the control polygon at the end points follows from the fact that the first 
derivative of the B-spline curve is given by                                  

�            where          �  

Therefore, the derivative of a B-spline curve is another B-spline curve of degree  �   

on the original knot vector with a new set of control points  �  .  

Hence, �   and �  .


Convex Hull and Local Support Property


• A curve span lies within the convex hull of the control points that affect it. The i'th 
span of a cubic B-spline curve lies within the convex hull formed by control points 

�  .


• A single span of a B-spline curve is controlled only by �  control points, and any 

control point affects �  spans. Specifically, changing �  affects the curve in the 

parameter range  �  and a curve at a point �  where �  is 

completely determined by the control points �  .
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� 


• In general, the lower the degree the closer a B-spline curve follows its control 
polyline.


� 


order k = 8 

(degree p = 7)

order k = 6 

(degree p = 5)

order k = 4 

(degree p = 3)
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Force pure straightening of a curve segment by constraining �  adjacent control 

points to be collinear.


• Shene's section titled "Moving Control Points" gives us the information we need to 
force pure straightening of a section of a B-spline curve.  On occasion we have used 
this in STELLCOPT to straighten the outleg section of MC coils to avoid 
interferences with blanket ports. The following (blue text and figures) are extracted 
from Shene's notes:


If t lies in knot span � , then C(t) lies in the convex hull defined by p+1 (i.e., k) 

control points �  . Since this is true for all t in that span, the 

curve segment on this knot span lies entirely in this convex hull. If all of these p+1 
control points are collinear (i.e., on a straight line), the convex hull collapses to a line 
segment and so does the curve segment it contains. As a result, the curve segment on 

knot span �  becomes a line segment. Note that in this case only this curve 

segment becomes a line segment. Other curve segments are still non-linear. Let us 
take a look at an example:


�
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The figures above are obtained using n = 15 (i.e., 16 control points), k = 4 (degree 3) 
and m = 19 (i.e., 20 knots). The first four and last four knots are clamped. Figure (a) is 

the given B-spline curve. Let us make P9, P8, P7 and P6 collinear. Therefore, the curve 

segment on  lies in the convex hull defined by P9, P8, P7 and P6. Since this 

convex hull is a line segment, the curve segment must also be a line segment. Keep in 
mind that the first four knots are clamped and hence the first three knot spans do not 

exist. Since � is the seventh knot span, the seventh segment collapses to the line 

segment P7P8. This is illustrated by figures (b), (c) and (d).


But, why is the curve segment on �  the only collapsed curve segment? Look at 

Figure (b). The shaded area is the convex hull just before u enters � . This convex 

hull is defined by control points P8, P7, P6 and P5, which is still not a line segment yet. 

Once t enters � , the curve segment collapses (Figure (c)). Immediately after t 

leaves � , a new convex hull appears (Figure (d)).


Figure (e) has P5 collinear with its four successors. The curve contains one more line 

segment. Figure (f) has P10 collinear with its five predecessors; however, it is moved to 

a position between P8 and P9. This would make part of the corresponding curve 
segment a straight line.


• To get a feel for the relationship between control points and curve shape, take a look 
at the B-spline demo at http://nurbscalculator.in The plot window on the right side 
shows a simple cubic B-spline curve (red) with 4 control points (the minimum number 
allowed for a cubic spline) in green and the polyline shown in black. First, click the 
XY Plane box showing below the plot window. This will ensure you are working with a 
curve in 2D (the relevant case in STELLCOPT)

�                                                   
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Click and drag one of the green control points. This is rather trivial, so now you can 

select "Add new control point" and click at a few positions (say 4) on the window 
(beginning somewhere near the top right control point - the curve starts at the 
bottom left, and ends at the top right as you can see from the Table of values on the 

left side of the screen. Before you do anything else select "Modify control point 

position". Now you have a less trivial shape you can modify by dragging one of  the 

control point location green boxes. In the lower of the Tables on the LHS, note the 
values of the knots (uniform) then click on the "Clamped at start" button and see 

what happens to the knot vector and to the shapoe of the red curve. Now click on 

the "Clamped at end" button and note the changes. Try moving some of the control 
points for this clamped curve. Finally, experiment with dragging a couple of the 

control points to enforce collinearity of three or more of the � .  This should make you 

comfortable with the veracity of the notes in this write-up.


Adding control points without changing the shape of a B-spline curve 

This is covered in Shene's notes under the topic of Knot Insertion. The topic is useful 
for STELLCOPT because we may run with a particular number of control points and 
find a coil design corresponding to an effective local minimum whose associated 
physics properties are not 'good enough'. So it is natural to want to check whether the 
calculation has not included enough degrees of freedom in the coil specification. 


Given a coil curve described by n+1 control points, �  , we would 

like to increase n but preserve the identical curve shape so that when we run 
STELLCOPT we are using exactly the same coil shapes and physics. We note that 

because of the relationship � , for every knot that is inserted for a given curve 

there will also be a control point inserted.
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Knot Insertion (for cubic B-splines): 

Consider a curve segment corresponding to the knot span �   corresponding to 

the four control points � . These points are vertices of the polyline 

with three legs shown below.

� 


To insert a new knot � , we first find the knot span �  that contains � . 


For that � , three new control points �  are computed using     

� ,   with �  on leg   �  , and where 


�     for     � .


Finally, the original polyline between �  and �  is replaced by the new polyline 

defined by � . After inserting the new knot, the knot vector 

becomes � .


FORTRAN code /p/stellopt/ANALYSIS/Pomphrey/UTILITIES/add_knots.f adds one 

or several control points to an existing B-spline curve. Below, we show an example of  a 

coil curve taken from a STELLCOPT run using 15 control pts (n=14) and 19 equally 

spaced knots (m=18). We add 5 knots (and therefore 5 control points) in such a way 

that the coil shape is exactly preserved. We show only the Type C coil, but of course we 

can add control points to any other or all of the coils. The resulting spline curve would 
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form a starting point for a new STELLCOPT run with 6 additional degrees of fredom per 

coil. 

 
Polylines for the original n=14 and new n=20 B-splines are shown in blue and red, 
respectively. In this example we chose to sweep through the add_knots algorithm six 
times with  = 3, 6, 9, 12, 15, and 18. This results in a change from the original 15 
control point sequence of  
to the new 21 point sequence  

 
preserving the boundary condition that the beginning and end points of the curve are 
the same point. The following tables may help keep track of curve segments: 

k
P0, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14

P0, Q1, Q2, Q3, P3, Q4, Q5, Q6, P6, Q7, Q8, Q9, P9, Q10, Q11, Q12, P12, Q13, Q14, Q15, P15
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Original Knots: 

Knot spans: [tk, tk+1) 

Curve segments:  Pk - Pk+4 associated with above knot spans 

0 0 0 0 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12 1 1 1 1

�t0 �t17�t15�t13�t11�t9�t7�t5�t3�t1 �t18�t16�t14�t12�t10�t8�t6�t4�t2

3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15

0-3 1-4 2-5 3-6 4-7 5-8 6-9 7-10 8-11 9-12 10-13 11-14


