5
Basics of generalization theory

Recall from Chapter 1 the language of Empirical Risk Minimization.
A datapoint x (for classification this is actually a (vector, label) pair)
is drawn from from a distribution D and S denotes the set of training
samples. The loss of a hypothesis h on datapoint x is ¢(x,). Since
hypothesis in deep learning is given by a parameter vector w we may
also represent this as ¢(x, w). Throughout the chapter we will assume
loss takes values in [0,1]. In generalization theory we are interested
in mathematically understanding the relationship between the test
loss and the training loss (respectively):

Lo(h) = E [((xh)] and Ls(h) = E ()] G

(Here ~ refers to “empirical.” The training is considered a success if
Lg(h) is small and the generalization error Ag(h) = Lp(h) — Lg(h) is
small too.

Generalization theory gives way to derive estimate of the number
of training samples sufficient to guarantee low generalization error.
The classic ideas described in this chapter give very loose (i.e., trivial)
estimates for deep learning. We survey attempts to provide tighter
estimates. Note that an experimenter does not need generalization
theory, since they can estimate generalization error by keeping an
held-out dataset. Thus the purpose of generalization theory is to un-
derstand how choice of architecture, algorithm, and training dataset
promotes good generalization.

Generalization theory takes inspiration from an old philosophi-

cal principle called Occam’s razor': given a choice between a simpler While it is attributed to 14th century
friar William Ockham, similar princi-

. ples had been articulated much earlier.
plain some empirical observations, we should trust the simpler one. Atistotle’s version: “the more limited, if

For instance, Copernicus’s heliocentric theory of the solar system adequate, is always preferable”)

theory of science and a more convoluted theory, both of which ex-

gained favor in science because it explained known facts more simply
than the ancient Aristotelian theory. While this makes intuitive sense,
Occam’s razor is a bit vague and hand-wavy. What makes a theory
"simpler" or "better"?

56 THEORY OF DEEP LEARNING

5.1 Occam'’s razor formalized for ML

The following is the mapping from the above intuitive notions to
notions in ML. (For simplicity we focus only on supervised learning
here, and consider other settings in later chapters.)

Minimize training loss to find h € H

Observations/evidence <+ Training dataset S
theory <> hypothesis h
All possible theories <+ hypothesis class H
Finding theory to fit observations <>
Theory is good (good predictions in new settings) <> h has low test loss
Simpler theory <+ h has shorter description

To give an example, H could be all possible deep nets of a certain
architecture and size. The notion of “shorter description”will be
formalized in a variety of ways using a complexity measure for the
class H, denoted C(#), and use it to upper bound the generalization
error.

Let S be a sample of m datapoints. Empirical Risk Minimization
(ERM) paradigm (see Chapter 1) involves finding h= arg min Ls(h).
Of course, in deep learning we may not find the absolute optimum
h but in practice the training loss becomes very small and near-zero.
Intuitively, if generalization error is large then the hypothesis’s per-
formance on training sample S does not accurately reflect the perfor-
mance on the full distribution of examples, and we say it overfitted to
the sample S.

The typical upper bound on generalization error > shows that
with probability at least 1 — é over the choice of training data, the
following holds:

As() < \/C(H) + O(log(1/9)) (5.2)

m

Thus to drive the generalization error down it suffices to make m
significantly larger than the “Complexity Measure”. Hence classes
with lower complexity require fewer training samples, in line with
Occam’s intuition.

But this is a good place to already note the main challenge posed
by (5.2): the generalization error is nontrivial only if C(H) < m.
But today’s deep nets are often overparametrized, so the number of
trainable parameters may exceed m. Thus the complexity measure of
the deep net is smaller than the number of parameters.

* This should be interpreted as rough
format of a typical generalization
bound; not an actual bound! In general
this chapter focuses on clear exposition
of the basic ideas, while being a bit
sloppy with constants.

BASICS OF GENERALIZATION THEORY

5.1.1 Motivation for generalization theory

Generalization bounds seek to estimate the generalization error using
properties of the trained model /1 and the training dataset S. Students
can wonder if the bound is any use if the experimenter has already
decided on the architecture, training algorithm etc. Indeed, if so,, the
experimenter can proceed with training and use a held out dataset to
estimate the generalization error.

The hope in developing generalization theory is that it provides
insights into how to design architectures and algorithms in the first
place so that they result in “low complexity” in the trained net, caus-
ing it to generalize well. Clearly, more principled understanding
along such lines would be nice.

5.1.2 Warmup: Classical polynomial interpolation

Suppose we are given 1 points (x(1),y™1)), ..., (x("), (") chosen
according to the following probabilistic process: x() is chosen from
uniform distribution on [0,1] and y!) = p(x()) 4 5 where p() is

an unknown degree d polynomial and 7 is a sample from the noise
distribution A (0,0?). Since E[] = 0 and [E[;?] = ¢ the obvious way
to find p is to minimize the least square fit to find the polynomial’s
coefficients 6y, 01, . . ., 8; that minimizes the squared error of the fit to
the data:

() = (" = Yo,
: =

i=1

This is implicitly doing linear regression using a new data repre-
sentation, whereby the point x € R is represented using the vector
(1,x,x%,...,x%).

But what if we don’t know the correct degree d and try to fit a
degree N polynomial where N > d? This is the so-called over-
parametrized setting. Under what conditions would minimizing the
above loss give us roughly the same polynomial as p()? A practical
idea —noting the fact that the above loss is no? even for the ground
truth polynomial p()—is to add for some large-ish A > 0 the regu-
larizer A||0]|3 to the above loss. This signals to gradient descent that
it is unimportant to reduce the least squares loss all the way to zero,
and instead it should find solutions 6’s of low norm. More generally
one could use other measures of “complexity” than square of the
Euclidean norm.

This example is intuitive and can be analysed more rigorously
but requires the theory of orthonormal polynomials with respect to
natural distributions on [0, 1].

57

58 THEORY OF DEEP LEARNING

5.2 Union Bound technique

Many analyses in generalization theory use the union bound in ele-
mentary probability: every set of events A1, Ay, ... satisfy Pr[U;A;] <
L PrA].

The first example illustrates this in an almost trivial setting. But
we shall soon see the same idea at the heart of other generalization
bounds?3, albeit often hidden inside the proof. The bound shows that
if a hypothesis class contains at most N distinct hypotheses, then
log N (i.e., close to the number of bits needed to represent the index
of the hypotheses in this class) is the effective complexity measure in

(5.2).

Theorem 5.2.1 (Finite Hypothesis Class). If the loss function takes
values in [0,1] and hypothesis class H contains N distinct hypotheses then
with probability at least 1 — 0, every h € H satisfies

As(h) <2,/ (log N +log(1/5)) /m.

Proof. For any fixed hypothesis /i imagine drawing a training sam-
ple of size m. Then Lg (k) is an average of i.i.d. variables and its
expectation is Lp (/). Let Ag(h) denote Lp(h) — Lg(h). Note that
Es[As(h)] = 0. Thus, Hoeffding’s inequality implies that for any
fixed h, P(As(h) > €) < exp(—2me?). Then, by the union bound,
Prs(3h : As(h) > €) < N - exp(—2me?). Setting this to 6 and solving

for € yields the result. O

At first sight the union bound may appear useless for deep nets. If

the net has k real-valued parameters, the set of possible hypotheses
—even having fixed the architecture—is R¥, an uncountable set! 4
Generalization bounds often find a way around this hurdle via some
form of discretization argument. We give the simplest example first,
and then a more nontrivial example in Section 5.2.1.

Example 5.2.2 (Quantization). Consider a trained network f with k real-
valued parameters. Suppose we can replace all parameter values by 8-bit
integers to get a new network g, such that g still performs almost as well as
f on the training set. 5 The class of all possible networks with k parameters
with each taking 8-bit values is still vast but finite, namely at most 28,
Then generalization can be proved in principle using a simple union bound
as in Theorem 5.2.1.

5.2.1 Vector quantization via e-cover argument

Instead of naively discretizing each coordinate, this method approxi-
mates the continuous set of all possible deep nets via a finite number

3 The union bound is also referred to

as uniform convergence framework in
many books. Often the hypothesis class
is infinite but the proof discretizes it, as
in Theorem 5.2.7.

4 Another intriguing possibility, which
hasn’t yet been explored as much, is
to compute a finite upper bound on
the types of solutions gradient descent
could find. For instance we saw in
Chapter 4 that gradient descent finds
stationary point (i.e., where V = 0) of
the training loss. One could conceivably
bound the number of such stationary
points. Such investigation hasn’t yet
worked out because current nets are
so overparametrized (i.e., number of
parameters far exceeding the number
of training data points) that the set of
such solution points in the landscape
is also in general a continuous set (i.e.,
uncountable).

5 Quantization is practically important
when one tries to fit large models inside
limited GPU memory. Quantization
methods have helped shrink the cost of
serving Al models.

BASICS OF GENERALIZATION THEORY 5’9

of “fairly distinct” deep nets. It involves a famous mathematical no-
tion: e-cover. (A related notion is e-net, but it is not used here.)

Suppose we assume that the ¢,-norm of the parameter vectors is
at most 1, meaning the set of all deep nets has been identified with
Ball(0,1). (Here Ball(w, r) refers to set of all points in R¥ within
distance r of w.)

Now we need loss to be locally Lipschitz in the parameters: there
are constants p, v such that for every datapoint x, if the parameter
vectors wy, w; satisfy ||wy — wall2 < p then |[£(x, wy) — £(x, wy)| <

Y||wy — wal|2. © It makes intuitive sense such a p must exist for every ¢ Actually the argument only requires
Lipschitz-ness of the average loss on

. the training set, not loss on single data
practical bounds, one would need p, y to not be too small. points.

¥ > 0 since as we let p — 0 the two nets become equal. But to obtain

Problem 5.2.3. Compute Lipschitz constant of the ¢, regression loss: the
loss on datapoint (x,y) is (w - x —y)2.

Problem 5.2.4. Compute Lipschitz constant of £, loss for a two layer
deep net with ReLU gates (zero bias) on the middle layer. Assume the two
parameter vectors are infinitesimally close.

Definition 5.2.5 (p-cover). A set of points wy,wy, ... € Ball(0,1) is a p-
cover if for every w € Ball(0,1) there is some w; such that w € Ball(w;, p).

Lemma 5.2.6 (Existence of p-cover). There exists a p-cover of size at most

((2+p)/20)".

Proof. The proof is simple but clever. Let us pick w; arbitrarily in
Ball(0,1). For i = 2,3,... do the following: arbitrarily pick any point
in Ball(0, 1) outside U;<;Ball(w;, p) and designate it as w; .

A priori it is unclear if this process will ever terminate. We now
show it does after at most (2/p)* steps. To see this, it suffices to note
that Ball(w;, p/2) N Ball(wj, p/2) = @ for all i < j. (Because if not,
then w; € Ball(w;, p), which means that w; could not have been
picked during the above process.) Thus we conclude that the process
must have stopped after at most

volume(Ball(0,1 + p/2))/volume(Ball(0,p/2))

iterations?, which is at most ((2 4 p)/20)¥ since ball volume in R* 7 The reason for 1+ p/2 in the numer-

scales as the kth power of the radius. ator is that if a w; lies at the surface
p of Ball(0,1) then the ball of radius

Finally, the sequence of w;’s at the end must be a p-cover be- 0/2 around it lies in the ball of radius
cause the process stops only when no point can be found outside 1+ p/2 around the origin

Theorem 5.2.7 (Generalization bound for normed spaces assuming
Lipschitz losses). If (i) hypotheses are unit vectors in R¥ and (ii) every
two hypotheses hy, hy with ||hy — hy||2 < p differ in terms of loss on every

60 THEORY OF DEEP LEARNING

datapoint by at most <y then

Ag(h) <y +24/klog(2/p)/m.

Proof. Apply the union bound on the p-cover. Every other net can
have loss at most y higher than nets in the p-cover. O

This bound is often vacuous for deep neural networks, where
the number of parameters k can be much larger than the number
of training samples m. Thus parameter-count alone fails to capture
the ‘effective size” of models found by modern training methods.
This suggests our notion of model complexity/simplicity needs to be
more sophisticated, incorporating not just the size of the hypothesis
space, but also the properties of the data itself. This motivates the
topic of the next section.

5.3 Data dependent complexity measures

Thus far we considered complexity measures for hypothesis classes
as a way to quantify their “complicatedness.” : the size of the hy-
pothesis class (assuming it is finite) and the size of a y-cover in it.
In pratice, the bounds on sample complexity derived using these
methods are still often loose.

One thing to note is that these simple bounds hold for every data
distribution D. In practice, it seems clear that deep nets —or any
learning method—works by being able to exploit properties of the
input distribution (e.g., convolutional structure exploits the fact that
all subpatches of images can be processed very similarly). Thus one
should try to prove some measure of complicatedness that depends
on the data distribution.

5.3.1 Rademacher Complexity

Rademacher complexity is a complexity measure that depends on
data distribution. As usual our description assumes loss function
takes values in [0, 1].

The definition concerns the following thought experiment. Recall
that the distribution D is on labeled datapoints (x,y). For simplicity
we denote the labeled datapoint as z.

Now Rademacher Complexity 8 of hypothesis class # on a distribu-
tion D is defined as follows where (z, 1) is loss of hypothesis h on
labeled datapoint z.

E

1
= — Su
51,52 P

Rm,D(H) m et
€

Y Iz h) - Y l(z,h)H, (5:3)

ZESy ZESy

8 Standard accounts of this often con-
fuse students, or at least falsely impress
them with a complicated proof of

Thm 5.3.1 that hides the simple idea
below. Our definition is simplified

a bit: in the standard definition, one
picks a sign &1 (or Rademacher random
variables) for each of the 2m datapionts
and looks at loss weighted by this sign.
The value yielded by our definition is
within £0(1/+/m) of the one in the
standard definition.

BASICS OF GENERALIZATION THEORY 61

where the expectation is over S, Sp are two iid sample sets (i.e., mul-
tisets) of size m each from the data distribution D. Note that this
definition involves the thought experiment of picking Sq, S, and
picking a classifier whose training error on these is as different as
possible. The following theorem relates this to generalization error of
the trained hypothesis.

Theorem 5.3.1. If h is the hypothesis trained via ERM using a training set
Sy of size m, then the probability (over Sp) is > 1 — 6, that

Bs, () < 2Ry,0(H) + O((log(1/8)) //m).

Proof. The generalization error Ag, (h) = Lp(h) — Ijg\z (h), and ERM
guarantees an /i that maximizes this. Imagine we pick another m iid
samples from distribution D to get another (multi)set S;. Then with
probability at least 1 — J the loss on these samples closely approxi-
mates Lp(h):

As,(h) < L, (h) — Ls, () + O((log(1/8))/ /m).

Now we notice that 51, S, thus drawn are exactly like the sets drawn
in the thought experiment of (5.3) 9 (5.3) and the maximizer & for this
expression defined R, p. So the right hand side is at most

2Rup(H) + O((log(1/8))//m).
O

Problem 5.3.2. Show that the Rademacher complexity of the set of linear
classifiers (unit norm vectors U = {w|w € RY, |w||, = 1}), on a given
sample S = {x1,%2,- - ,xp} (each x; € RY) is < max;epy || xill2/ v/m.

Problem 5.3.3. Consider the kernel classifier of the form h(x) = z' G~ ly
we studied in Section 2.2 where G is the n X n kernel matrix, y is the labels
and z is the column vector whose i-th coordinate is K(x, x;). Show that the
Rademacher complexity upper is \/2y " Gy - Tr(G) /n. (We will use this
result in Chapter 9 to prove certain over-parameterized student nets can
learn simple two-layer teacher nets.)

5.3.2 Alternative Interpretation: Ability to correlate with random la-

bels

Teachers explain Rademacher complexity more intuitively as ability of
classifiers in H to correlate with random labelings of the data. This is best
understood for binary classification (i.e., labels are 0/1), and the loss
function is also binary (loss 0 for correct label and 1 for incorrect
label). Now consider the following experiment: Pick 51, S, as in

the definition of Rademacher Complexity, and imagine flipping the

9 Here hypothesis & is allowed to
depend on S, but not 5. In the thought
experiment the supremum is over / that
can depend on both. This only helps
the inequality, since the latter # can
achieve a larger value. Note that the
factor 2 is because of scaling of 2m in

(5-3)-

62 THEORY OF DEEP LEARNING

labels of S1. Now average loss on S is 1 — L/S\Z (h). Thus selecting h
to maximise the right hand side of (5.3) is like finding an & that has
low loss on S U S, where the labels have been flipped on S;. In other
words, & is able to achieve low loss on datasets where labels were
flipped for some randomly chosen set of half of the training points.

When the loss is not binary a similar statement still holds qualita-
tively.

5.4 Understanding limitations of the union-bound approach

The phenomenon captured in the union bound approach and related
approaches is also refered to as uniform convergence. If we have iden-

tified a finite set H of hypotheses and sample S of datapoints is large
enough then with probability is at least 1 — 6 over choice of S that

ILp(h) —Ls(h)|| <€ VheH. (5-4)

Here the important point to note is that a fixed sample set S can be
used for good estimate of generalization error for every classifier i in
the class'. Of course, using y-cover this kind of conclusion can be
shown also for classes ‘H that are a continuous set, e.g. hypotheses
with bounded ¢, norm. Now we describe a nice and simple example
by Nagarajan and Kolter '* that pinpoints why this framework may
be tricky to apply in modern settings, especially deep learning. The
point is that the hypothesis class of interest is implicitly defined via
the optimization algorithm (say, gradient descent), and this class may
not allow a clean analysis via a union bound.

5.4.1 An illustrative example that mixes optimization and generaliza-
tion

Suppose the points are in RP X and the labels are +-1. There is a
fixed vector u € R¥ such that labeled datapoints (x,y) come from
the following distribution D: first label y is uniformly picked in
{#1} and then the first K coordinates of x —which we denote x; for
convenience—are set to the vector y - u. The remaining D coordinates,
denoted x, consist of a random vector P, whose each coordinate
is drawn independently from N (0,1/D). Measure concentration
implies x, is distributed essentially like a random unit vector in RP.

The classification can clearly be solved using the linear classifier
x — sgn(w* - x) where the first K coordinates contain w; = u/||ul|3,
and the last D coordinates contain w; = 0.

Let’s consider a simple training objective: find linear classifer
h(x) that maximises y - h(x). Roughly speaking, this ignores the
magnitude of i(x) and tries to align the sign of i(x) and y. Using

** Note that most of these classifiers
may have terrible loss on S; the union
bound only guarantees that the general-
ization error is small.

"'V Nagarajan and Zico Kolter. Uni-
form convergence may be unable to
explain generalization in deep learning.
NeurIPS, 2019

BASICS OF GENERALIZATION THEORY

learning rate 7 = 1 and a sample S of m datapoints (x',y') for i =
1,...,m gradient descent produces a classifier with ws = (w1, wy)
where

Ws1 =m- U, wsp = Zyixé- (5-5)
i

Notice that wg is a sum of m random unit vectors, which means
its norm is fairly tightly concentrated around /m. In other words,
unlike our ideal classifier w* the learnt classifier has a lot of junk in
the last D coordinates that is not relevant to the classification.

Now we describe how to set the various parameters. As usual m
denotes training set size. We set

my/(log1/6) ~ D (5.6)
1
3 = — (5:7)

The ¢, norm of the learnt classifier wg is around 1/ m?2||u||3 + m,

and thus (5.7) implies this norm is /2.

Let’s check that the junk coordinates do not interfere with clas-
sification for randomly chosen data points m—in other words, has
good test error. Given a new data point x = (y - u, xp) where x,
is a random unit vector, the learnt classifier produces the answer
ws - x = myl[ul|3 + x2 - (L; y'xb). Since inner product between a
fixed vector and a random gaussian vector N'(0,1/D) is a univariate
gaussian with standard deviation 1/+/D times the norm of the fixed
vector, we see that the sign of this is correct i.e. y, with probability

mlogl/é
mllul3 > /===,

which holds from (5.6) and (5.7). Thus the learnt classifier works fine

1— 0 solong as

on random test data points.

But now imagine we try to explain the success of learning via a
union-bound argument. Let’s denote by Hg the set of such classifiers
that could result from GD on training sets of m datapoints. The argu-
ment would have to prove that with high probability, Ag(%) is small
for all classifiers h € Hy. The next result shows this is not true.

Claim 5.4.1. For a random sample set S, whp there is a classifier wy;,
whose generalization error is large (specifically, whose loss on full distribu-
tion D is small but whose loss on S is large.)

Proof. We let wiip be the classifier trained on the set Stlip, which is
obtained by taking S and flipping the sign of the x; part. In other
words, datapoint z = (y'u, x}), ') of S turns into Zfip = (y'u, —xb),y")
in Sgip. Note that Sg;, has exactly the same probability as S. By our

63

64 THEORY OF DEEP LEARNING

earlier analysis, ws and wg;, agree on the first K coordinates, but
have the signs of the last D coordinates flipped. Thus the absolute
value of (ws — wg;p) - z is at least 2xb - x}, = 2. Thus we have shown

that the signs of ws - z and wgp, - z are different. O

Let us consider what we have shown. The classifier ws and wgjp
both have excellent test error. However, on the training set S used
to produce wg, the classifier wy;, has bad generalization error. This
shows a stumbling block on proving good generalization of wg on
training dataset S using the naive union bound.

Note that the limitations shown above do not hold if we are al-
lowed to modify/prune the classifier obtained at the end of training.
One can imagine identifying non-influential coordinates in the learnt
classifier via some simple test and realizing that the last D coordi-
nates can be zero-ed out without greatly affecting accuracy. Then all
learnt classifiers become scalar multiples of the ideal classifier w*. In

other words, the limitations shown here do not apply to the approach

we describe in the next Section.

5.5 A Compression-based framework

Now we described a simple compression-based technique’ from
Arora et al '3 that formalizes a very simple idea. Suppose the train-
ing dataset S contains m samples, and # is a classifier from a com-
plicated class (e.g., deep nets with much more than m parameters)
that incurs very low empirical loss. We are trying to understand
from looking at 1 and S how well i will generalize. Now suppose we
can compute a classifier g with discrete trainable parameters much
fewer than m and which incurs similar loss on the training data as
h. We call this an approximator for h. Then if ¢ has sufficiently low
description length, its generalization follows by simple union bound
argument. '4

This framework has the advantage of staying with intuitive pa-
rameter counting and to avoid explicitly dealing with the hypoth-
esis class that includes & (see note after Theorem 5.5.3). Notice, the
mapping from f to g merely needs to exist, not to be efficiently com-
putable. But in all our examples the mapping will be explicit and
fairly efficient. Now we formalize the notions. The proofs are ele-
mentary via concentration bounds and appear in the appendix.

Definition 5.5.1 ((7,S)-compressible). Let f be a classifier and G4 =
{ga|A € A} be a class of classifiers. We say f is (vy, S)-compressible via
G 4 if there exists A € A such that for any x € S, we have for all y

F) Y] = ga()yll <.

> Do not confuse this with another
older and unrelated technique in
generalization theory based upon data
compression, which is not applicable to
deep learning.

3 Sanjeev Arora, Rong Ge, Behnam
Neyshabur, and Yi Zhang. Stronger
generalization bounds for deep nets via
a compression approach. In Proc. ICML
2018, pages 254-263, 2018

4 This scenario is quite reminiscent

of empirical work in network prun-

ing, whereby trained deep nets are
compressed using one of a long list of
methods that prune away lots of param-
eters and retrain the rest. If network left
after pruning is compact enough, one
can conceivably prove generalization
bounds for the pruned net. See

BASICS OF GENERALIZATION THEORY 65

We also consider a different setting where the compression al-
gorithm is allowed a”helper string” s, which is arbitrary but fixed
before looking at the training samples. Often s will contain random
numbers. >

Definition 5.5.2 ((7,5)-compressible using helper string s). Suppose
Gas = {gas|A € A} is a class of classifiers indexed by trainable param-
eters A and fixed strings s. A classifier f is (vy, S)-compressible with respect
to G 45 using helper string s if there exists A € A such that for any x € S,
we have for all y

If(x)[y] = gas(X) Y]] <.

The following theorem is a simple application of the union bound
method above.

Theorem 5.5.3. Suppose Gas = {gas|A € A} where A is a set of g
parameters each of which can have at most r discrete values and s is a helper
string. Let S be a training set with m samples. If the trained classifier f is
(7, S)-compressible via G 4 s with helper string s, then there exists A € A
with high probability over the training set,

L(ga) <L(f) +0 (\/‘”‘;gr),

where L(f) = E(,eplf(x)[y] < maxjy, f(x)[f]] is the expected
error and L., (f) is the proportion of data (x,y) satisfying f(x)[y] <
max;,, f(x)[j] in the training set S.

Remarks: (1) The framework proves the generalization not of f but
of its compression g4. (An exception is if the two are shown to have
similar loss at every point in the domain, not just the training set.
This is the case in Theorem 5.5.6.)

(2) The previous remark highlights the difference from what we
called the union bound earlier (Theorem 5.2.1). There, one needs to
fix a hypothesis class independent of the training set. By contrast we
have no hypothesis class, only a single neural net that has some spe-
cific properties on a single finite training set. But if we can compress
this specific neural net to a simpler neural nets with fewer parame-
ters then we can use covering number argument on this simpler class
to get the generalization of the compressed net.

(3) Issue (1) exists also in how researchers often apply the standard
PAC-Bayes framework for deep nets (Section 5.6).

5.5.1 Example 1: Linear classifiers with margin

To illustrate the above compression method we use linear classifiers
with high margins. Consider a simple family of linear classifiers,

> A simple example is to let s be the
random initialization used for training
the deep net. Then one could compress
the difference between the final weights
and s; this can give better generalization
bounds.

66 THEORY OF DEEP LEARNING

consisting of unit vectors ¢ € RY whose +1 output on input x is
given by sgn(c - x) (i.e., sign of the inner product with the datapoint).
Assume that all data points are also unit vectors. Say c has margin <y
if for all training pairs (x,y) we have y(c'x) > 7.

We show how to compress such a classifier with margin - to one
that has only O(1/?) non-zero entries. First, assume all ¢; have
absolute value less than 72 /8.

For each coordinate i, toss a coin with Pr[heads] = p; = 8c?/~* and
if it comes up heads set the coordinate to equal to ¢;/p; = 7¥*/8c;.
This yields a vector ¢. The expected number of non-zero entries in ¢
is Y4 | pi = 8/92. By Chernoff bound we know with high probability
the number of non-zero entries is at most O(1/ 2.

Furthermore, variance of coordinate i of € is 2p;(1 — pi);—’i < %’2 <
7% /4. Therefore, for any unit vector u that is independent V:Iith the
choice of ¢, we have E[¢" u] = ¢"u . Now we estimate variance of the
random variable ¢ u. Ttis < 42/4 - ||lu||> < 9?/4. By Chebyshev’s
inequality we know Pr[|c"u — ¢ u| > 7] < 1/4, so ¢ and ¢ will make
the same prediction for all u satisfying |c"u| > 7. We can then apply
Theorem 5.5.3 on a discretized version of ¢ (via trivial rounding)
to show that the sparsified classifier has good generalization with
O(logd/~?) samples.

Problem 5.5.4. Redo the proof above when some coordinates have absolute
value more than +*/8.

This compressed classifier works correctly for a fixed input x with
constant probability but not high probability. To fix this, one can
recourse to the “compression with fixed string” model. The fixed
string is a random linear transformation. When applied to unit vector
¢, it tends to equalize all coordinates and the guarantee |¢'u —c'u| <
7 can hold with high probability. This random linear transformation
can be fixed before seeing the training data.

Problem 5.5.5. Prove the above property of random linear transformations.
That is, let M be a random matrix of size O(1/ Y?) x d, drawn from a
suitable distribution you choose before seeing the unit vector c and the
training data. Then, show that the following holds for fixed unit vectors c
and u with high probability

[Mcflo = O(1), [(Mc, Mu) = (c,u)| <.

This means we can compress a unit vector ¢ to ¢ = M Mc. Finally, Apply
Theorem 5.5.3 on a discretized version of C to show a good generalization
bound with O(1/~?2) samples, where O can hide polylog factors of d and
1/7.

BASICS OF GENERALIZATION THEORY 67

5.5.2 Example 2: Generalization bounds for deep nets using low rank
approximations

Some of the early generalization bounds for fully connected nets
used the fact that layer matrices are often found to be low rank. (Or
perhaps the final matrix minus the initialization.) We give a simple
proof of such a result.

Realize that an /& X h matrix of rank r has effectively 2hr param-
eters despite having /i entries. We recall that for a square matrix A
the spectral norm (i.e., largest singular value) is denoted || A||, and
sum of squares of singular values is denoted denoted || A||2 where
|| - || is also called Frobenius norm. The ratio ||A||%/]|A| is called
stable rank, and it is clearly upper bounded by the rank. Often the
layers of the trained net have low stable rank even though rank per se
is high.

Theorem 5.5.6. (*®) For a depth-d ReLU net with hidden layers of equal
width h and single coordinate output, let A', A2, ... A? be weight matrices
and -y be the output margin on a training set S of size m. Then the general-
ization error can be bounded by

. Aill2
e macs [Ty AR L T

O
vim

4 AR
i=1 |73
ranks of the layers, a natural measure of their true parameter count.
The first part ([T, || A’ 13) is related to the Lipschitz constant of the

network, namely, the maximum norm of the vector it can produce

The second part of this expression (3) is sum of stable

if the input is a unit vector. The Lipschitz constant of a matrix op-
erator B is just its spectral norm || B||,. Since the network applies a
sequence of matrix operations interspersed with ReLU, and ReLU is
1-Lipschitz we conclude that the Lipschitz constant of the full net-
work is at most [TZ, || A’||>.

To prove Theorem 5.5.6 we use the following lemma to compress
the matrix at each layer to a matrix of smaller rank. Since a matrix
of rank 7 can be expressed as the product of two matrices of inner
dimension 7, it has 2hr parameters (instead of the trivial #2). (Further-
more, the parameters can be discretized via trivial rounding to get a
compression with discrete parameters as needed by Definition 5.5.1.)

Lemma 5.5.7. For any matrix A € R™*", [et A be the truncated version
of A where singular values that are smaller than || Al|, are removed. Then
|A — Alla < 8| Al|2 and A has rank at most || A||2/(6*|| A]3).

Proof. Let r be the rank of A. By construction, the maximum singular

16 Behnam Neyshabur, Srinadh Bhojana-
palli, David McAllester, and Nathan
Srebro. A pac-bayesian approach to
spectrally-normalized margin bounds
for neural networks. ICLR, 2018

68 THEORY OF DEEP LEARNING

value of A — A is at most || Al|. Since the remaining singular values
are at least 6| A||», we have ||Al|r > || Allr > V75| All2. O

For each i replace layer i by its compression using the above
lemma, with § = ~(3d| x| TT%, || A7||l2) ~!. How much error does
this introduce at each layer and how much does it affect the output
after passing through the intermediate layers (and getting magni-
fied by their Lipschitz constants)? Since A — Al has spectral norm
(i-e., Lipschitz constant) at most 6|| A’||, the error at the output due
to changing layer i in isolation is at most H}i:iﬂ | A||5 - 8[| AT -
Hj;% |A7||2 - ||x]| < v/3d. Rest of the proof is left to the reader and
generalization bound follows immediately from Theorem 5.5.3.

Problem 5.5.8. Complete the above proof using a simple induction (see '7
if needed) to show the total error incurred in all layers is strictly bounded by
7. That is, for an input x, the change in the deep net output is smaller than
v after replacing every weight matrix A® with its truncated version A’

5.6 PAC-Bayes bounds

These bounds due to McAllester (1999) [McAgg] are in principle the
tightest, meaning previous bounds in this chapter are its subcases.
They are descended from an old philosophical tradition of consider-
ing the logical foundations for belief systems, which often uses Bayes’
Theorem. For example, in the 18th century, Laplace sought to give
meaning to questions like “What is the probability that the sun will rise
tomorrow?” The answer to this question depends upon the person’s
prior beliefs (e.g., degree of scientific knowledge) as well as their em-
pirical observation that the sun has risen every day in their lifetime.
This philosophical connection sometimes helps students improve
their understanding of generalization.

In ML context, PAC-Bayes bounds assume that experimenter (i.e.,
ML expert) has some prior distribution P over the hypothesis H.
If asked to classify without seeing any concrete training data, the
experimenter would pick a hypothesis / according to P (denoted
h ~ P) and classify using it h. After seeing the training data and
running computations, the experimenter’s distribution changes to the
posterior Q, meaning now if asked to classify they would pick i1 ~ Q
and use that. Thus the expected test loss is

E [Lo()]

The theory requires Q to be a valid posterior with respect to P,
meaning every hypothesis & that gets zero probability under P also
must have zero probability under Q. The following form of PAC-

Bayes bound is from 8.

7 Behnam Neyshabur, Srinadh Bhojana-
palli, David McAllester, and Nathan
Srebro. A pac-bayesian approach to
spectrally-normalized margin bounds
for neural networks. ICLR, 2018

® John Langford. Quantitatively tight
sample complexity bounds. PhD Thesis
CMU, 2002

BASICS OF GENERALIZATION THEORY 69

Theorem 5.6.1 (PAC-Bayes bound). Let D be the data distribution and
P be a prior distribution over hypothesis class H and 6 > 0. If S is a set
of i.i.d. samples of size m from D and Q is any valid posterior (possibly
depending arbitrarily on S) then Ag(Q) = Ejq[Lp(h) — Ls(h)] satisfies
the following bound with probability 1 — 6,

2s(0) < \/D(QP) +In(2m/9)

2(m—1) ’
where D(Q| |P) =]EhNQ [ln(Q(h) /P(h))] is the so-called KL—divergencel9. 9 This is a measure of distance between
distributions, meaningful when P
In other words, generalization error can be upper bounded using dominates Q, in the sense that every h

with nonzero probability in Q also has
nonzero probability in P. Note that in
terms that arise from concentration bounds. this definition, 0In 0 is interpreted as 0.

the (square root of) KL-divergence of the distributions, plus some

Example 5.6.2. P could be the standard normal distribution, which assigns
nonzero probability to every vector. For any sample set S, we could let Q be
the distribution on parameter vectors obtained by vanilla deep learning us-
ing S: that is, initialize parameters using random Gaaussian, and train with
SGD with a predetermined learning rate schedule. Since SGD is a stochastic
process (due to randomness of batches) it leads to a natural distribution Q
on trained classifiers at the end of training. Notice, Q is a valid posterior of
P because P assigns nonzero probability to every classifier h. As this exam-
ple emphasizes, one can consider various P and Q for the same classification
setup (e.g., by changing some aspect of training) and the generalization
bound will hold for every fixed choice.

Example 5.6.3. Suppose h is any classifier and P, Q are the distribu-
tion that assigns probability 1 to h and zero to all other hypotheses. Then
D(QI|P) = 0, and by Hoeffding bound we have Ag(Q) = Ag(h) <

log1/9) e inequality in PAC-Bayes bound is satisfied.

2m
Problem 5.6.4. Derive the union bound Theorem 5.2.1 using PAC-Bayes.
Now we're ready to prove Theorem 5.6.1. In interest of exposition,

we prove a weaker statement that is qualitatively similar but not
quite correct:

As(Q) < \/2(D(QIIP)+ln(Z/5)) 58)

m

The incorrectness arises due to a simplifying assumption about the
quantity z = /mAg(h) where & is a fixed classifier and S is a random
subset of m samples. Since Ag(h) is an average of m iid variables tak-
ing values in [—1, 1] and with mean 0, we assume z behaves exactly
like a normal distribution A/(0,1). Of course, in truth z is dominated
in distribution by A/(0,1) in the limit m — co. This assumption can
be removed by using a more quantitative argument with Hoeffding

70 THEORY OF DEEP LEARNING

bound. The assumption allows us to assume that expected value of
o7/ (2+e) approaches /2 when x is drawn from A/ (0,1) and € is an
arbitrarily small constant. For simplicity we will assume /2 = /2.
It is possible to fix the proof using concentration bounds.

Proof. (Theorem 5.6.1, weaker version (5.8)) Rearranging the expres-
sion in the theorem statement, we see that it gives an upper bound of

In(2/6) on (m/2) Epg[As(h)])? — D(Q |P) By Jensen’s inequality °
applied to the square function f(x) = x2, this expression is at most
(m/2) Eyg[As(h)?] — D(Q]||P). We show this is upper bounded by

In(2/6). The steps are:

— E_[(m/2)86(h? ~ In(Q()/P(1))|

h~Q

- E [1n (exp((m/Z)As(h)z) ‘P(h)/Q(h))}

h~Q
< In (h@NEQ [exp((m/Z)As(h)z) .P(h)/Q(h)}) ,

where the last inequality uses Jensen’s inequality along with the con-
cavity of In. Also, since taking expectation over I ~ Q is effectively
like a weighted sum with term for 1 weighted by Q(h), we have 2*

n E [exp((m/Z)A(h)z) -P(h) /Q(h)} =In E_ [exp((m/z)A(h)z)]

Recapping, we have thus shown the following for a fixed dataset S:

(n/2) E (s = D(QIP) < 1n B [250F]) (s0)

Note that the RHS has no dependence on posterior Q. Using the
fact that S is a random sample of size m and that prior belief P was
fixed before seeing S (i.e., is independent of S):

IE[]E {e(mﬂ)As(h)zH - E { et/ As<h)H V<o,
S [h~P h~P

Simple averaging implies that with probability 1 — J over S,
(m/2)Ds(h)?]
E [e] <2/5 (5.10)

and now by taking logarithm of both sides the proof is completed.
O

5.6.1 Gemini 2.5 adapted above proof for original statement!!

Now we're ready to prove Theorem 5.6.1. The standard proof can feel
like a series of unmotivated algebraic tricks. Instead, we present a
proof sketch that is mathematically sound but aims for greater intu-
ition. It relies on two key ingredients which we will take as given.

* Jensen’s Inequality: For a concave
function f and random variable X,
E[f(X)] < f(E[X]). For convex
function the inequality is reversed.

2t Often when you see KL-divergence in
machine learning, you will see this trick
being used to switch the distribution
over which expectation is taken!

BASICS OF GENERALIZATION THEORY

The first is a fundamental inequality that connects an expectation
over the posterior Q to one over the prior P. For any function f(h), it
states:

h~Q

The second ingredient is **Hoeffding’s Lemma**, the tool used to

E (0] < D(@IIP) +n ,[o"]). (5:11)

prove the Hoeffding inequality you have already seen. It gives a tight
bound on the moment-generating function of an average. For an
average A of m ii.d. random variables with mean o, each bounded in
[—1,1], and any A > 0:

E [e/m} < M/, (5.12)

This lemma formalizes the idea that the average A is strongly con-
centrated around its mean in a sub-Gaussian manner. With these two
tools, the proof becomes a straightforward sequence of steps.

Proof. (Theorem 5.6.1, sketch) Let’s apply the key inequality (5.11) by
setting f(h) = AAg(h) for some A > 0 that we will choose later to get
the tightest bound. For any fixed training set S, we have:

A E [As(h)] < D(Q|IP) +In(E_|eMst]).
E [8(00] < D(QIIP) +1n (£, [
The right-hand side still depends on the random sample S. To handle
this, we take the expectation over S on both sides. Since P is indepen-
dent of S, and using Jensen’s inequality for the concave In function
(E[InX] < InE[X]), we can move the expectation inside the loga-
rithm:

B[, B [as(h)]| < DQIIP) +E [1n (B [0])
<D(@lIP) +1n (E| 5, [20]|).

Now for the crucial step, we swap the order of expectations. 2>
E |\ E [As(h)]| < D(Q||P) +In(E_|E [eMsM]]).
g (A, [as(0)]| < D@|IP) +1n (B, [B[2]

Let’s focus on the inner term Eg [eMS(h) . For any fixed h, Ag(h) is
an average of m mean-zero variables (the per-sample losses) bounded
n [—1,1]. This is exactly the setup for Hoeffding’s Lemma (5.12).
Applying it gives:

E {e)\As(h)} < AN /2m
S

Substituting this powerful and simple bound back into our main
inequality, we find that the expectation over P becomes trivial, as the

71

> This is permitted by Fubini’s theorem,
as the terms are non-negative.

72 THEORY OF DEEP LEARNING

bound is independent of :

E [AhEQ[AS(h)]] < D(Q[[P) +In (,}EP [ewsz

= D(QIIP) +1In (¢¥*/2")
22

= D(QIIP) + 5.
We have shown that the expected generalization error (averaged over
all possible datasets S) is bounded. A final application of Markov’s
inequality implies that with probability at least 1 — 6 over the choice
of S, the generalization error is not much larger than this expectation.
A more careful derivation yields:

D(QIIP) +1n(1/6) A
E [s(0)] < e Y

This bound holds for any A > 0. We can choose A to minimize the
right-hand side. The optimal choice is A = /2m(D(QJ|P) +In(1/9)),

which leads to the final bound in the theorem. This completes the
D(QI[P)+In(1/9) > '

sketch, showing that the generalization error scales as O (o

O

5.7 Exercises

1. Assume the loss function ¢ is 1-Lipschitz. Consider the kernel
classifier of the form h(x) = z' G~y we studied in Section 2.2
where G is the n X n kernel matrix, y is the labels and z is the
column vector whose i-th coordinate is K(x, x;). Prove that its
Rademacher complexity is upper bounded by /2y " Gy - Tr(G) /n.
(Hint: view the kernel classifier as a linear classifier in a Reproduc-
ing Kernel Hilbert Space.)

2. Rademacher Complexity of a Finite Class. Let 7 be a finite hy-
pothesis class with |#| = N. Show that its Rademacher complexity
(as defined in Eq. 5.3) is bounded by:

Ry () < /202N

(Hint: Use Hoeffding’s inequality on the inner term for a fixed
h, then apply a union bound. A more advanced hint is to use
Massart’s finite lemma.) This shows that for finite classes, the
Rademacher complexity bound is closely related to the direct
union bound of Theorem 5.2.1.

3. PAC-Bayes with Gaussian Distributions. Consider a simple
hypothesis class of linear classifiers in R¥, where a hypothesis is

BASICS OF GENERALIZATION THEORY 73

just a vector w € Rk. Let the prior distribution P be a standard
Gaussian, w ~ N (0, I). After training on a dataset S, we find
an optimal weight vector @. Let the posterior distribution Q be a
Gaussian centered at @ with the same variance, w ~ N (@, I;).

(a) Compute the KL-divergence D(Q||P). Recall that the KL-
divergence between two multivariate Gaussians Q = N (g, X0)
and P = N (up,Zp) is given by

1 dets
D(QIIP) = 5 (tr(zple) + (up — o) 'Zp (#p — po) —k+1n (deetzg>) :

(b) Substitute your result into the PAC-Bayes bound (Theo-
rem 5.6.1). How does the bound depend on the squared norm
of the learned weight vector, ||@||3?

(c) What does this suggest about the relationship between finding
low-norm solutions (as in L2 regularization) and obtaining good
generalization bounds?

. Generalization via Quantization. Recall the quantization idea
from Example 5.2.2. Suppose you have trained a deep network

f with k parameters, wy, ..., wg. You find that you can quantize
each weight w; to the nearest multiple of some small € > 0 within
the range [—M, M|, creating a new network g. The number of
possible discrete values for each weight is thus 2M/e + 1. Assume
this quantization is (-, S)-compressible, meaning the output of ¢
differs from f by at most 7y on the training set S.

(a) Let the set of all such quantized networks be G. What is an
upper bound on the size of this class, |G|?

(b) Use the compression framework (Theorem 5.5.3) to derive a
generalization bound for the quantized network g. Your bound
should depend on k, m, and the number of quantization levels.

