
4
Gradient-based Optimization and its Analysis

This chapter sets up the basic analysis framework for gradient-based
optimization algorithms and discuss how it applies to deep learn-
ing. The algorithms work well in practice; the question for theory
is to analyse them and give recommendations for practice. This has
happened to some extent, but it has also become clearer that classical
ways of thinking about optimization may not be a perfect match with
phenomena encountered in deep learning. Nevertheless, the mate-
rial in this chapter is foundational for thinking about optimization
in deep learning. We discus the basic algorithms, and then give the
handful of clean analyses of these methods that use minimal assump-
tions and thus can be applied to deep learning as well. 1 1 Note that an analysis with minimal

assumptions is the one that is most
generally applicable. The downside is
that it yields convergence bounds that
are far from what one might observe in
real life.

The conceptual framework in optimization builds upon simple
Taylor approximation (Equation 4.1) of the loss function and thus
relies upon derivatives (of various orders) of the loss function.

Gradient descent (GD) If you are reading this book you probably
know about gradient descent, a fundamental idea in machine learn-
ing and AI. Suppose we wish to minimize a continuous function
f (w) over Rd.

min
w→Rd

f (w) .

The gradient descent (GD) algorithm is

w0 = initialization

wt+1 = wt ↑ η↓ f (wt)

where η is called step size or learning rate. The choice of η is important
and discussed later in the rest of the Chapter. 2 2 Gradient descent is not guaranteed

to find optimum solutions for general
loss functions. For instance, complexity
theory shows that given a degree 4
polynomial p(w1, w2, . . . , wn) in n
variables of total degree at most 6,
it is NP-hard to determine whether
or not it is 0 for some assignment
to the variables. This can be proven
easily using NP-completeness of 3SAT
problem.

There is an efficient algorithm for computing the gradient of a loss
function for deep learning, the classic back-propagation algorithm
(Chapter 3).

38 theory of deep learning

Note that today’s deep nets often use nonlinear activations, e.g.,
ReLU, that causes the overall function computed by the net to be
non-differentiable. However, this non-differentiability is of the mild
sort and does not appear to be an issue in practice.

4.1 Understanding Optimization via Taylor Expansion

4.1.1 First-Order Method: Gradient Descent

The motivation for Gradient Descent (GD) is that the update direc-
tion, ↑↓ f (wt), is the direction of steepest local descent. To see why,
consider the Taylor expansion of the function f (·) at a point wt:

f (w) = f (wt) + ↔↓ f (wt), w ↑ wt↗︸ ︷︷ ︸
linear in w

+
1
2
(w ↑ wt)

T
↓

2 f (wt)(w ↑ wt)
︸ ︷︷ ︸

quadratic in w

+ · · ·

(4.1)

Here, ↓
2 f (·) is the matrix of second-order derivatives called the

Hessian. Its (i, j) entry is ∂2 f /∂wi∂wj, and it is a symmetric matrix3. 3 The order-k term in the Taylor expan-
sion involves the tensor of all kth-order
partial derivatives, consisting of dk

entries.

If we keep only the first-order (linear) approximation, our goal is
to find a small step δ = w ↑ wt that minimizes this approximation.
We constrain the step to have a small norm, e.g., ↘δ↘2 ≃ ε, to ensure
we stay in a region where the approximation is valid.

min
δ→Rd

f (wt) + ↓ f (wt)
Tδ

subject to ↘δ↘2 ≃ ε

Since f (wt) is a constant, this is equivalent to minimizing the inner
product ↓ f (wt)Tδ.

Problem 4.1.1. Show that the vector δ that solves the minimization prob-
lem above is δ = ↑ϱ↓ f (wt) for some positive scalar ϱ > 0.

Solution Sketch: The inner product can be written as ↓ f (wt)Tδ =

↘↓ f (wt)↘2↘δ↘2 cos θ, where θ is the angle between the gradient and
the step δ. To make this quantity as negative as possible, we must
choose cos θ = ↑1, which means δ must point in the exact oppo-
site direction of the gradient ↓ f (wt). The magnitude of the step is
determined by the constraint ε.

This confirms that the optimal local direction to move is precisely
the negative gradient. This gives us the standard Gradient Descent
update rule, where η is the learning rate:

wt+1 = wt ↑ η↓ f (wt) (4.2)

gradient-based optimization and its analysis 39

4.1.2 Second-Order Method: Newton’s Method

The first-order approximation is simple, but it ignores the curvature
of the function, captured by the Hessian term. What if we use a more
accurate, second-order (quadratic) model of the function around wt?

f (wt + δ) ⇐ fq(δ) = f (wt) + ↓ f (wt)
Tδ +

1
2

δT Htδ (4.3)

where Ht = ↓
2 f (wt) is the Hessian at wt.

Instead of just finding the best direction, we can now find the ex-
act step δ that minimizes this quadratic approximation. For a convex
quadratic, the minimum can be found by setting its gradient with
respect to δ to zero:

↓δ fq(δ) = ↓ f (wt) + Htδ = 0 (4.4)

=⇒ Htδ = ↑↓ f (wt) (4.5)

=⇒ δ = ↑H↑1
t ↓ f (wt) (4.6)

This optimal step is called the Newton step. This leads to Newton’s
Method, an iterative optimization algorithm where the update rule
is:

wt+1 = wt ↑ H↑1
t ↓ f (wt) (4.7)

Why is this a good idea? While gradient descent follows the steep-
est slope, Newton’s method directs the step towards the minimum
of a local quadratic approximation of the function. This gives it two
major advantages:

1. It accounts for curvature. If the loss surface is a long, narrow
valley (i.e., high curvature in one direction), the gradient might
point perpendicularly across the valley. The term H↑1

t acts as a
preconditioner that rescales the gradient, correcting its direction to
point more directly towards the minimum.

2. Faster Convergence. Near a minimum, Newton’s method exhibits
quadratic convergence, which is much faster than the linear con-
vergence of gradient descent. This means the number of correct
digits in the solution can roughly double with each iteration.

The Catch: Why isn’t it always used? Despite its power, New-
ton’s method is rarely used to train large models like LLMs due to
prohibitive computational costs:

1. Computing the Hessian: For a model with d parameters, the
Hessian is a d ⇑ d matrix, requiring O(d2) work to compute.

2. Storing the Hessian: Storing the matrix requires O(d2) memory.

40 theory of deep learning

3. Inverting the Hessian: Inverting the matrix is an O(d3) operation.

For a model with millions or billions of parameters (d), these costs
are infeasible. Furthermore, if the Hessian is not positive definite
(e.g., at a saddle point), the Newton step may not even be a descent
direction.

This has led to the development of Quasi-Newton methods (like
BFGS and L-BFGS), which approximate the inverse Hessian itera-
tively without ever forming the full matrix, offering a compromise
between the speed of second-order methods and the efficiency of
first-order methods.

4.1.3 Bounding the Taylor Expansion via Smoothness

The foundational analysis of Gradient Descent’s convergence speed
relies on a property of the loss function called smoothness. In-
tuitively, a function is smooth if its gradient does not change too
rapidly.

Definition 4.1.2 (L-smoothness). A differentiable function f is L-smooth
if its gradient is L-Lipschitz continuous, meaning for any two points w1, w2:

↘↓ f (w1) ↑ ↓ f (w2)↘2 ≃ L↘w1 ↑ w2↘2 (4.8)

If f is twice differentiable, this is equivalent to stating that for any w, all
eigenvalues of the Hessian ↓

2 f (w) lie in the interval [↑L, L].

This property allows us to create a tight quadratic upper bound on
the function.

Problem 4.1.3. 4 Prove that if f is L-smooth, then for any w and wt: 4 Remember Taylor’s theorem: f (w) ↑

f (w1) ↑ ↓ f (w1)(w ↑ w1) is a power
series and it can be upper bounded
by the 2nd order term of the Taylor
expansion evaluated at an intermediate
point between w, w1.

f (w) ≃ f (wt) + ↓ f (wt)
T(w ↑ wt) +

L
2
↘w ↑ wt↘

2
2 (4.9)

This inequality is fundamental. It tells us that the function is never
much larger than its local quadratic approximation, with the curva-
ture of the quadratic controlled by L.

4.1.4 The Descent Lemma for Gradient Descent

Using the smoothness bound, we can prove that gradient descent
makes progress on the objective function with a sufficiently small
learning rate, unless it is already at a stationary point (where the
gradient is zero).

Lemma 4.1.4 (Descent Lemma). Suppose f is L-smooth. If we use the
gradient descent update wt+1 = wt ↑ η↓ f (wt) with a learning rate
η ≃ 1/L, we have:

f (wt+1) ≃ f (wt) ↑
η

2
↘↓ f (wt)↘

2
2

gradient-based optimization and its analysis 41

5 5 The proof also shows that descent
occurs so long as η < 2/L.

Proof. Let δt = wt+1 ↑ wt = ↑η↓ f (wt). We use the upper bound
from Eq. (4.9):

f (wt+1) ≃ f (wt) + ↓ f (wt)
T(↑η↓ f (wt)) +

L
2
↘ ↑ η↓ f (wt)↘

2
2

= f (wt) ↑ η↘↓ f (wt)↘
2
2 +

Lη2

2
↘↓ f (wt)↘

2
2

= f (wt) ↑ η(1 ↑
Lη

2
)↘↓ f (wt)↘

2
2

Descent is guaranteed as long as the term (1 ↑ Lη/2) is positive,
which holds for any η < 2/L. For the specific rate in the lemma, if
η ≃ 1/L, then (1 ↑ Lη/2) ⇓ 1/2. Substituting this gives:

f (wt+1) ≃ f (wt) ↑
η

2
↘↓ f (wt)↘

2
2

This lemma shows that the function value decreases at each step,
and the decrease is proportional to the squared norm of the gradient.
This has an important consequence.

Corollary 4.1.5. For a function that is bounded below, repeatedly applying
the Descent Lemma implies that ↘↓ f (wt)↘2

2 ⇔ 0 as t ⇔ ∞. This means
gradient descent is guaranteed to converge to a stationary point, where the
gradient is zero.

For a convex function, any stationary point is a global minimum.
However, the loss functions for deep networks are non-convex, mean-
ing they can have many stationary points that are not global minima
(i.e., local minima or saddle points).

Definition 4.1.6. We say w is a stationary point of f if ↓ f (w) = 0. If,
in addition, the Hessian ↓

2 f (w) is positive semidefinite at w, then w is a
local minimum.

Despite the lack of a global guarantee, the stationary points (more
precisely, near-stationary points) found by gradient-based methods in
practice often correspond to solutions with very low training loss and
good generalization.

4.2 Stochastic Gradient Descent (SGD)

In modern machine learning, the loss function is typically an average
over a large dataset of n samples:

L(w) =
1
n

n

∑
i=1

fi(w)

42 theory of deep learning

Figure 4.1: Convex and Non-
convex Functions in two vari-
ables. For nonconvex functions
GD will reach a stationary
point, where gradient is zero.
(Figure from kdnuggets.org)

where fi(w) is the loss on the i-th example. Computing the full gra-
dient ↓L(w) requires a complete pass over the dataset, which is
computationally prohibitive for large n.

Stochastic Gradient Descent (SGD) addresses this by approximat-
ing the gradient using a small random sample of the data, called a
mini-batch. At each iteration t, we sample a mini-batch St of size
B ↖ n and compute the stochastic gradient:

gt(wt) =
1
B ∑

i→St

↓ fi(wt)

This is an unbiased estimator of the true gradient 6 i.e., ESt [gt(wt)] = 6 Here we are using linearity of expec-
tation and linearity of derivatives; very
convenient!

↓L(wt). The SGD update rule is then:

wt+1 = wt ↑ η · gt(wt)

While the noisy gradients cause the loss to fluctuate, SGD is supe-
rior to full-batch GD in practice for several reasons:

1. Efficiency: It allows for far more parameter updates in the same
amount of time.

2. Regularization Effect: While it may seem that the noise/error
in the gradient estimate should hurt the optimization, in actu-
ally it seems to help in deep learning! In other words, stochastic
optimization is superior to exact optimization. One important
reason is that in deep learning the ultimate goal is a model that
works well on unseen data. This is the topic of generalization, as
explained in later chapters. Roughly, the idea is that full GD can
end up in sharp local minima, whereas stochastic GD tends to find
“flatter” minima that tend to generalize better to unseen data. We
will study this “Implicit Bias” effect in more detail in later chap-
ters.)

gradient-based optimization and its analysis 43

4.3 Accelerated Gradient Descent (Momentum)

The path taken by GD can be highly oscillatory, especially in narrow
valleys of the loss landscape. Accelerated methods aim to dampen
these oscillations and speed up convergence by incorporating mem-
ory of past updates.

The most common version is the heavy-ball algorithm, which
adds a momentum term:

wt+1 = wt ↑η↓ f (wt)︸ ︷︷ ︸
current gradient

+ β(wt ↑ wt↑1)︸ ︷︷ ︸
momentum

The parameter β → [0, 1) is the momentum coefficient. This update
is analogous to a heavy ball rolling down a hill: the gradient acts
as a force, while the momentum term keeps the ball moving in its
previous direction, accumulating velocity. This helps it roll past small
bumps and speed up along consistent downhill directions.

The update can be equivalently written by tracking the velocity
vector vt:

vt = βvt↑1 + η↓ f (wt)

wt+1 = wt ↑ vt

This formulation shows that the update is a weighted average of past
gradients.

A popular variant is Nesterov Accelerated Gradient (NAG). The
key idea is to compute the gradient not at the current position wt, but
at a "look-ahead" position where the momentum is about to carry the
iterate.

vt = βvt↑1 + η↓ f (wt ↑ βvt↑1)

wt+1 = wt ↑ vt

By "looking ahead," NAG can react more quickly and correct its
course, leading to stronger theoretical convergence guarantees for
convex functions. In practice, both methods improve significantly
upon standard GD and SGD for minimizing convex functions. For
deep learning they often help as well though, though as noted earlier
the training loss has multiple minima for deep nets, and thus evalu-
ating the goodness of the optimization algorithm involves looking at
the generalization properties, rather than mere optimization speed.

4.4 Convergence Analysis: Warmup via Quadratic Models

This being a book on Theory of Deep Learning, we are interested in
understanding convergence behavior of different algorithms: how

44 theory of deep learning

fast do they find a “good enough” solution? The underlying issues
can be understood by analyzing GD on a simple convex quadratic
function:

f (w) =
1
2

w↙Aw

where A → Rd⇑d is a positive semidefinite matrix. The gradient is
↓ f (w) = Aw and the Hessian is ↓

2 f (w) = A.
To simplify the analysis, we can work in a coordinate system de-

fined by the eigenvectors of A. If A = UΣU↙ is the eigendecom-
position of A, we can define ŵ = U↙w. The objective becomes
f (ŵ) = 1

2 ŵ↙Σŵ, where Σ = diag(λ1, . . . , λd) contains the eigen-
values. The function is now a sum of decoupled quadratics:

f (ŵ) =
1
2

d

∑
i=1

λiŵ2
i

The GD update for each coordinate ŵi is independent:

ŵ(t+1)
i = ŵ(t)

i ↑ ηλiŵ
(t)
i = (1 ↑ ηλi)ŵ(t)

i

For this to converge, we need |1 ↑ ηλi| < 1 for all i, which implies
η < 2/λmax, where λmax = maxi λi = L is the smoothness constant.

The convergence rate is dictated by the slowest-converging coordi-
nate. The rate of convergence for coordinate i is (1 ↑ ηλi). To make
progress on the fastest-curving direction (corresponding to λmax),
we must set η ⇐ 1/λmax. With this learning rate, the convergence
factor for the slowest direction (corresponding to λmin) becomes
(1 ↑ λmin/λmax). This leads to a key principle:

The convergence rate of GD is governed by the condition number
κ = λmax/λmin, which is the ratio of the largest to the smallest

eigenvalue of the Hessian.

A high condition number means the loss surface is a steep, elongated
valley. GD will oscillate across the narrow direction while making
slow progress along the flat direction.

Need figure showing the elliptical contour lines of a
poorly-conditioned quadratic. The figure would show GD tak-
ing many small, zig-zagging steps, whereas a preconditioned
method like Newton’s would point directly to the minimum.

4.4.1 Preconditioning and Adaptive Methods

The analysis above shows that a single learning rate is not optimal
for all directions. Ideally, we would use a per-coordinate learning rate

gradient-based optimization and its analysis 45

of ηi ⇐ 1/λi. This is the core idea of preconditioning. In the original
coordinate system, this corresponds to the update:

wt+1 = wt ↑ A↑1
↓ f (wt)

For a general function, this becomes Newton’s method, using the
inverse Hessian as a preconditioner:

wt+1 = wt ↑ (↓2 f (wt))
↑1

↓ f (wt)

As discussed previously, computing and inverting the Hessian is
too expensive. Adaptive methods approximate this preconditioning
by using information from the gradients themselves to dynamically
adjust a per-parameter learning rate.

4.5 Popular optimizers

In the past 15 years a raft of optimization methods were invented that
try to use the central insight of 2nd order methods in a more efficient
update rule. The idea is to maintain some running average of the
squared gradients for each parameter to estimate the curvature (i.e.,
Hessian).

Adagrad (Adaptive Gradient Algorithm) 7 scales the learning rate 7 Adaptive Subgradient Methods
for Online Learning and Stochastic
Optimization. J. Duchi, E. Hazan,
Y. Singer. JMRL 2011

for each parameter inversely proportional to the square root of the
sum of all past squared gradients.

• Problem: The accumulated sum only grows, causing the learning
rate to monotonically decrease and eventually become infinitesi-
mally small, prematurely stopping training.

RMSprop (Root Mean Square Propagation), an improvement in
G. Hinton’s unpublished notes, fixes this by using an exponentially
decaying moving average of squared gradients instead of a sum. This
allows the learning rate to adapt and not just decrease. Let st be the
moving average of squared gradients:

st = γst↑1 + (1 ↑ γ)(gt ∝ gt)

wt+1 = wt ↑
η

′
st + ε

∝ gt

where ∝ is element-wise multiplication and ε is a small constant for
stability.

Adam (Adaptive Moment Estimation) 8 is a further modification 8 ADAM: A Method For Stochastic
Optimization. D. Kingma and J. Ba.
ICLR 2015

that has become one of the most popular optimization algorithms
today. It combines the momentum idea (first moment of the gradient)
with the adaptive learning rates of RMSprop (second moment). It

46 theory of deep learning

maintains moving averages for both the gradient and its square:

mt = β1mt↑1 + (1 ↑ β1)gt (Momentum)

vt = β2vt↑1 + (1 ↑ β2)(gt ∝ gt) (RMSprop-like)

After bias correction (not shown), the update combines these two:

wt+1 = wt ↑
η

′
vt + ε

∝ mt

Adam has been a popular choice for training deep neural networks
due to its robust performance across a wide range of tasks.

AdamW (Adam with Decoupled Weight Decay) 9 is a variant 9 Decoupled Weight Decay Regulariza-
tion. I. Loshchilov and F. Hutter. ICLR
2019

of Adam that adjusts its implementation of L2 regularization. In
standard Adam, the weight decay is implicitly affected by the adap-
tive learning rates, as it becomes part of the gradient term gt. This
couples the decay to the second moment estimate vt, making it less
effective.

AdamW decouples the weight decay from the gradient update.
The momentum and RMSprop-like parts are unchanged:

mt = β1mt↑1 + (1 ↑ β1)gt

vt = β2vt↑1 + (1 ↑ β2)(gt ∝ gt)

The weight decay is then applied directly to the parameters in the
final update step, where λ is the weight decay rate:

wt+1 = wt ↑ η

(
m̂t

′
v̂t + ε

+ λwt

)

This seemingly small change often leads to significantly better gener-
alization performance, and AdamW has become the default choice in
many modern deep learning frameworks.

LION (Evolved Sign Momentum) is a novel optimizer discov-
ered by a Google Brain team10 through an automated search pro- 10 Symbolic Discovery of Optimization

Algorithms, Chen et al. 2023cess, rather than by manual design. It is simpler and more memory-
efficient than Adam, as it does not require a second-moment esti-
mate. LION’s core idea is to use the sign of the momentum to de-
termine the update direction, applying a uniform update magnitude
across all parameters.

The update is split into two parts: generating the update direction
and updating the momentum itself, using two distinct hyperparame-
ters β1 and β2.

ut = sign(β1mt↑1 + (1 ↑ β1)gt) (Update direction)

mt = β2mt↑1 + (1 ↑ β2)gt (Momentum update)

The parameter update is then simply a step in the direction of ut:

wt+1 = wt ↑ ηut

gradient-based optimization and its analysis 47

By discarding the magnitude information from the gradient and re-
lying only on the sign, LION decouples the update from the adaptive
learning rates seen in Adam and RMSprop. This simplification saves
memory (no vt vector) and has been shown to achieve strong per-
formance, particularly in large-scale training for models like Vision
Transformers.

4.5.1 Exotic LR schedules

Another feature of modern deep learning is proliferation of learning
rate schedules, which are recipes for adjusting the LR during train-
ing. These adjustments are to the final update direction computed
according to one of the above methods.

For language models the popular choice is cosine schedule11 given 11 I. Loshchilov, and F. Hutter. Decou-
pled weight decay regularization. ICLR,
2019.

by

ηt =
1
2
(1 + cos(

t ↑ 1
T

π)) 1 ≃ t ≃ T + 1.

We will return to these later in the book, and present some analy-
ses for why they work.

4.6 Convergence rates under smoothness conditions

As mentioned earlier, gradient-based methods cannot in general find
the optimum value of even simple nonconvex functions such as low-
degree polynomials. But we did note that if the function is differen-
tiable and smooth, then with a suitably small learning rate, loss does
decrease monotonically so long as the gradient is nonzero. In other
words, the process ends up with a stationary point, where ↓ = 0. This
chapter establishes upper bounds on how long it takes to get close to
a stationary point. See Chapter 7 for analysis of convergence rate to a
stronger type of solution: local optimum.

As usual the objective/loss function is denoted f (w) where w →

∞
d. The procedure has T iterations, and the parameter vectors in

these iterations are denoted w1, ..., wT respectively. We assume
boundedness: i.e., there is a known M such that | f (wt)| ≃

M
2 for all

t = 1, . . . , T. We also assume f is L-smooth, which implies

f (w) ≃ f (w∈) + ↓ f (w∈)(w ↑ w∈) +
L
2
↘w ↑ w∈

↘
2. (4.10)

Throughout the chapter, ↓t is shorthand for ↓ f (wt).

4.6.1 Need for smoothness: A simple lower bound

In constrained non-convex optimization, finding a stationary point
presents difficult computational challenges. Even when objective

48 theory of deep learning

functions are bounded, local information may provide no information
about the location of a stationary point.

Figure 4.2: A difficult “nee-
dle in a haystack” case for
non-convex optimization. A
function with a hidden valley,
with small gradients shown in
yellow.

Consider, for example, the function sketched in Figure 4.2. In
this construction, defined on the hypercube in Rn, the unique point
with a vanishing gradient is a hidden valley, and gradients outside
this valley are all identical. Clearly, it is hopeless in an information-
theoretic sense to find this point efficiently: the number of value or
gradient evaluations of this function must be exp(Ω(n)) to discover
the valley.

To circumvent such inherently difficult and degenerate cases, we
require that the objective function be smooth. As we shall see, this
allows efficient algorithms for finding a point with small gradient.

4.6.2 Convergence rates for GD

This section analyses gradient descent given exact gradient. Next
section analyses stochastic GD.

Algorithm 2 Gradient descent

1: Input: f , T, initial point w1 → K, sequence of step sizes {ηt}

2: for t = 1 to T do
3: Let wt+1 = wt ↑ ηt↓ f (wt)

4: end for
5: return wτ , τ → [T] s.t. ↓τ is smallest in Euclidean norm.

Theorem 4.6.1. For unconstrained minimization of L-smooth functions
and ηt = 1

L , Algorithm 2 satisfies the following for at least one τ → [1, T] (
M = largest absolute value of any f (wt) encountered during the algorithm.

↘↓τ↘
2

≃
1
T ∑

t
↘↓t↘

2
≃

4ML
T

.

gradient-based optimization and its analysis 49

Proof. The Descent Lemma implies

f (wt+1) ↑ f (wt) ≃ ↓
↙
t (wt+1 ↑ wt) +

L
2
↘wt+1 ↑ wt↘

2 L-smoothness

= ↑ηt↘↓t↘
2 +

L
2

η2
t ↘↓t↘

2 algorithm defn.

= ↑
1

2L
↘↓t↘

2 choice of ηt =
1
L

Thus, summing up over T iterations, we have

1
2L

T

∑
t=1

↘↓t↘
2

≃ ∑
t
(f (wt) ↑ fwt+1) ≃ 2M

Thus it follows that at least one suitable τ exists in [1, T].

4.6.3 Stochastic gradient descent

In optimization for machine learning, the objective function f takes
the form

f (w) =
1
m ∑

i
ω(w, zi),

where zi, i → [m] are the training set examples, and ω is some loss
function that applies to the parameters w and datapoint zi. The key
idea of Stochastic Gradient Descent is that a random variable can
be used in lieu of the gradient, that has the same expectation. This
random variable is simply the average gradient of small batch of
examples from the training set. The analysis below even allows batch
size 1 (see Problem 4.6.3).

We denote by ↓̂t a random variable such that E[↓̂t] = ↓ f (wt) =

↓t (where expectation is over randomness used in gradient estima-
tion) and a bound on the second moment of this random variable
by

E[↘↓̂t↘
2] = σ2. (4.11)

Algorithm 3 Stochastic gradient descent

1: Input: f , T, initial point w1 → K, sequence of step sizes {ηt}

2: for t = 1 to T do
3: Let wt+1 = wt ↑ ηt↓̂t

4: end for
5: return wτ , τ → [T] s.t. ↓τ is smallest in Euclidean norm.

Theorem 4.6.2. For unconstrained minimization of L-smooth functions
and ηt = η =

√
M

Lσ2T , Algorithm 3 satisfies

E[↘↓τ↘
2] ≃ E

[
1
T ∑

t
↘↓t↘

2

]
≃ 2

√
MLσ2

T
.

50 theory of deep learning

Proof. Denote by ↓t the shorthand for ↓ f (wt). The stochastic de-
scent lemma is given in the following equation,

f (wt+1) ↑ f (wt) ≃ E[↓↙
t (wt+1 ↑ wt) +

L
2
↘wt+1 ↑ wt↘

2] β-smoothness

= ↑ E[η↓
↙
t ↓̃t] +

L
2

η2 E ↘↓̃t↘
2 algorithm defn.

= ↑η↘↓t↘
2 +

L
2

η2σ2 variance bound.

Thus, summing up over T iterations, we have for η =
√

M
Lσ2T ,

E

[
1
T

T

∑
t=1

↘↓t↘
2

]
≃

1
Tη ∑t E [f (wt) ↑ f (wt+1)] + η L

2 σ2
≃

M
Tη + η L

2 σ2

=
√

MLσ2
T + 1

2

√
MLσ2

T ≃ 2
√

MLσ2
T .

We thus conclude that O(1
ε4) iterations are needed to find a point

with ↘↓ f (w)↘ ≃ ε. However, each iteration only needs a stochastic
estimate of the gradient, and this estimate is a gross upperbound.
In practice given the same amount of compute, SGD is much more
efficient than GD at reducing loss.

Problem 4.6.3. Suppose the gradient is estimated using a random sample
of B datapoints. (a) Let ↓̃

(B)
t be the stochastic gradient at time t when the

batchsize is B. Suppose the variance of ↓̃
(1)
t (defined as E

[∥∥∥↓̃
(1)
t ↑ ↓t

∥∥∥
2
]

is bounded by γ2
1. Show that there exists an upper bound γ2

B on the variance
of ↓̃

(B)
t that scales with 1/B. (b) Compute the asymptotic size of T to find a

point with ↘↓ f (w)↘ ≃ ε depending on B and ε. For simplicity, you only
need to consider the case when η ≃

1
L .

4.6.4 Convergence Analysis for Adaptive Algorithms and AdaGrad

Adaptive methods were described earlier. They require more space
to store their parameters, usually 2 or 3 parameters for each of the
d coordinates in the gradient. But they can have faster convergence,
as well as other myterious properties in deep learning setting that
are not mathematically understood. In fact, several of these adaptive
algorithms are not guaranteed to converge even for convex loss.

We analyse AdaGrad 12, which was a precursor to modern adap- 12 J. Duchi, E. Hazan, and Y. Singer.
Adaptive subgradient methods for
online learning and stochastic opti-
mization. Journal of Machine Learning
Research, 2011

tive algorithms and does have a proof of convergence.

gradient-based optimization and its analysis 51

Algorithm 4 AdaGrad
for t = 1 to T do

Input: Matrices/scalars Pt, as below
Set

wt+1 = wt ↑ Pt↓̂t

end for
return wτ , τ → [T] s.t. ↓τ is smallest in Euclidean norm.

We start with a simple analysis of an adaptive stepsize first, as per
the following theorem. In this section, in addition to the aforemen-
tioned notation, we also use the shorthand notation ↓1:t = ∑t

i=1 ↓i,
and let G ⇓ ↘↓t↘ be an upper bound on the gradient norm.

Theorem 4.6.4. For unconstrained minimization of L-smooth functions
and Pt = ↘↓̂

2
1:t↘

↑1
· I, Algorithm 4 satisfies

E[↘↓τ↘
2] ≃ E

[
1
T ∑

t
↘↓t↘

2

]
≃

(L + M log GT) · ↘↓̂
2
1:t↑1↘

T
.

Proof. From the descent lemma:

↑M ≃ f (wT+1) ↑ f (w1)

= ∑t(f (wt+1) ↑ f (wt))

≃ ∑t(↓
↙
t (wt+1 ↑ wt) + L

2 ↘wt ↑ wt+1↘
2) smoothness

≃ ∑t(↑↓
↙
t Pt↓̂t + L

2 ↓̂
↙
t P2

t ↓̂t)

Let Pt = ↘↓̂
2
1:t↘

↑1, and let σ2
⇓ ↘↓̂t↘

2 be an upper bound on the
second moment of the stochastic gradient. Then notice that by the
Harmonic series,

∑
t

↓̂
↙
t P2

t ↓̂t = ∑
t

↘↓̂t↘
2

↘↓̂2
1:t↘

2
= ∑

t

↘↓̂t↘
2

∑t
i=1 ↘↓̂2

i ↘
2

≃ log GT

Using this inequality in the previous derivation, we get that

∑
t

↓
↙
t Pt↓̂t ≃ M +

L
2

log GT.

Taking the minimal valued LHS, we get

↓
↙
τ ↓̂τ · Pτ↑1 ≃ ↓

↙
τ ↓̂τ · Pτ ≃

(L + M log GT)
T

.

Taking expectation over the unbiased gradient estimator, and shifting
sides, we get

↘↓τ↘
2

≃
(L + M log GT) · ↘↓̂

2
1:t↑1↘

T
.

52 theory of deep learning

4.6.5 Adagrad Convergence: Diagonal Matrix case

Theorem 4.6.5. For unconstrained minimization of L-smooth functions
and Pt = diag(∑t↑1

i=1 ↓̂i↓̂
↙

i + σ2 I)↑1/2, Algorithm 4 satisfies

E[↘↓τ↘
2] ≃ E

[
1
T ∑

t
↘↓t↘

2

]
≃ (M + L log GT) ·

∑j

√
↓̂2

1:t(j)
T

.

Proof. From the descent lemma:

M ⇓ f (w1) ↑ f (wT+1)

= ∑t(f (wt) ↑ f (wt+1))

⇓ ∑t(↓
↙
t (wt ↑ wt+1) ↑

L
2 ↘wt ↑ wt+1↘

2) smoothness

= ∑t(↓
↙
t Pt↓̂t ↑

L
2 ↓̂

↙
t P2

t ↓̂t).

Taking conditional expectation, and the definition of Pt which is
conditionally independent of ↓̂t, we get

M ⇓ ∑d
i=1


∑t(↓

2
t (i)Pt(i) ↑

L
2 ↓̂

2
t (i)P2

t (i))


⇓ ∑d
i=1


∑t(↓

2
t (i)Pt(i) ↑

L
2 log σ2T)



⇓ maxd
i=1 ∑t ↓

2
t (i)Pt(i) ↑

L
2 log σ2T,

where the second inequality is due to the Harmonic series,

∑
t

↓̂
2
t (i)P2

t (i) = ∑
t

↓̂
2
t (i)

↓̂2
1:t↑1(i) + σ2

≃ ∑
t

↓̂
2
t (i)

↓̂2
1:t(i)

≃ log σ2T.

We conclude that any j,

∑
t

↓
2
t (j)Pt(j) ≃ max

i
∑

t
↓

2
t (i)Pt(i) ≃ M +

L
2

log σ2T.

Let cj be a random variable which is equal to ↓
2
t (j) with probabil-

ity 1
T . Then the above implies that

E[cj] ≃
M + L

2 log σ2T
TPt(j)

= (M + L log GT) ·

√
↓̂2

1:t(j)
T

.

Thus, summing over the coordinates j, we get

E ↘↓
2
τ↘

2 = E[∑
j

cj] ≃ (M + L log GT) ·
∑j

√
↓̂2

1:t(j)
T

.

4.7 Discussion: Degree of match between Theory and Practice

The classical optimization theory presented provides a crucial foun-
dation, but its assumptions often clash with the reality of modern
deep learning.

gradient-based optimization and its analysis 53

Setting the Learning Rate. The theory requires the learning rate
η < 2/L, where L is a global smoothness constant. In practice, L
is unknown and varies across the loss landscape. While one could
estimate the local smoothness using the power method to find the top
eigenvalue of the Hessian (via efficient Hessian-vector products as
explained in Section 3.4.1), this is rarely done. Instead, the learning
rate is treated as a critical hyperparameter, often tuned via trial and
error or decayed according to a schedule (e.g., reduced by a factor of
10 at certain epochs).

The Edge of Stability Phenomenon. Classical theory posits that for the
loss to decrease, the learning rate η must be set based on the smooth-
ness L. However, recent work 13 suggests that in deep learning, the 13 Jeremy Cohen, Simran Kaur, Yuanzhi

Li, J Zico Kolter, and Ameet Talwalkar.
Gradient descent on neural networks
typically occurs at the edge of stability.
ICLR, 2021

causality is reversed: the optimizer, when given a fixed learning
rate η, actively seeks out regions of the landscape where the local
smoothness L rises to meet the stability limit, i.e., L ⇐ 2/η. Training
in this "edge of stability" regime, where the loss can oscillate non-
monotonically but trends downward over the long term, appears to
be correlated with good final model performance. It highlights a key
difference between classical convex optimization and large-scale deep
learning. We will later see some theoretical attempts at explaining
this effect.

Published as a conference paper at ICLR 2021

GRADIENT DESCENT ON NEURAL NETWORKS TYPI-
CALLY OCCURS AT THE EDGE OF STABILITY

Jeremy Cohen Simran Kaur Yuanzhi Li J. Zico Kolter1 and Ameet Talwalkar2

Carnegie Mellon University and: 1Bosch AI 2 Determined AI
Correspondence to: jeremycohen@cmu.edu

ABSTRACT

We empirically demonstrate that full-batch gradient descent on neural network
training objectives typically operates in a regime we call the Edge of Stability.
In this regime, the maximum eigenvalue of the training loss Hessian hovers just
above the value 2/(step size), and the training loss behaves non-monotonically
over short timescales, yet consistently decreases over long timescales. Since this
behavior is inconsistent with several widespread presumptions in the field of op-
timization, our findings raise questions as to whether these presumptions are rel-
evant to neural network training. We hope that our findings will inspire future
efforts aimed at rigorously understanding optimization at the Edge of Stability.

1 INTRODUCTION

Neural networks are almost never trained using (full-batch) gradient descent, even though gradient
descent is the conceptual basis for popular optimization algorithms such as SGD. In this paper, we
train neural networks using gradient descent, and find two surprises. First, while little is known
about the dynamics of neural network training in general, we find that in the special case of gradient
descent, there is a simple characterization that holds across a broad range of network architectures
and tasks. Second, this characterization is strongly at odds with prevailing beliefs in optimization.

In more detail, as we train neural networks using gradient descent with step size ⌘, we measure the
evolution of the sharpness — the maximum eigenvalue of the training loss Hessian. Empirically,
the behavior of the sharpness is consistent across architectures and tasks: so long as the sharpness
is less than the value 2/⌘, it tends to continually rise (§3.1). We call this phenomenon progressive
sharpening. The significance of the value 2/⌘ is that gradient descent on quadratic objectives is
unstable if the sharpness exceeds this threshold (§2). Indeed, in neural network training, if the
sharpness ever crosses 2/⌘, gradient descent quickly becomes destabilized — that is, the iterates
start to oscillate with ever-increasing magnitude along the direction of greatest curvature. Yet once

Figure 1: Gradient descent typically occurs at the Edge of Stability. On three separate architec-
tures, we run gradient descent at a range of step sizes ⌘, and plot both the train loss (top row) and the
sharpness (bottom row). For each step size ⌘, observe that the sharpness rises to 2/⌘ (marked by the
horizontal dashed line of the appropriate color) and then hovers right at, or just above, this value.

1

ar
X

iv
:2

10
3.

00
06

5v
2

 [c
s.L

G
]

20
 Ju

n
20

21

Figure 4.3: Edge of stability
phenomenon. Figure 5 in Co-
hen et al. 2021 shows a ResNet
trained on 5k examples. When
doing GD (as opposed to SGD)
with a small learning rate η,
the smoothness is observed
to rise to 2/η and slightly be-
yond (figure on right). After
this point one sees loss go up
and down during iterations,
with a long-term downward
trend. No theoretical explana-
tion is known as of now. The
authors use “sharpness”instead
of smoothness, which actually
makes some sense because
higher L corresponds to a more
uneven landscape.

