SPEC 3.20
Stepped Pressure Equilibrium Code
|
dmupfdx
describes how the helicity multiplier, \(\mu\), and the enclosed poloidal flux, \(\Delta \psi_p\), must vary as the geometry is varied in order to satisfy the interface transform constraint. dmupfdx(1:Mvol,1:2,1:LGdof,0:1)
is allocated/deallocated in newton(), and hesian() if selected. \begin{eqnarray} \delta {\bf B_\pm} = \frac{\partial {\bf B}_\pm}{\partial x_j } \delta x_j + \frac{\partial {\bf B}_\pm}{\partial \mu } \delta \mu + \frac{\partial {\bf B}_\pm}{\partial \Delta \psi_p} \delta \Delta \psi_p. \end{eqnarray}
\begin{eqnarray} B_\pm^2 = B_\pm^2 (x_j, \mu, \Delta \psi_p), \end{eqnarray}
we may derive\begin{eqnarray} \frac{\partial B_\pm^2}{\partial x_j} = \frac{\partial B_\pm^2}{\partial x_j } + \frac{\partial B_\pm^2}{\partial \mu } \frac{\partial \mu }{\partial x_j} + \frac{\partial B_\pm^2}{\partial \Delta \psi_p} \frac{\partial \Delta \psi_p}{\partial x_j} \end{eqnarray}
\begin{eqnarray} \left(\begin{array}{ccc} \displaystyle \frac{\partial {{\,\iota\!\!\!}-}_-}{\partial {\bf B}_-} \cdot \frac{\partial {\bf B}_-}{\partial \mu } & , & \displaystyle \frac{\partial {{\,\iota\!\!\!}-}_-}{\partial {\bf B}_-} \cdot \frac{\partial {\bf B}_-}{\partial \Delta \psi_p} \\ \displaystyle \frac{\partial {{\,\iota\!\!\!}-}_+}{\partial {\bf B}_+} \cdot \frac{\partial {\bf B}_+}{\partial \mu } & , & \displaystyle \frac{\partial {{\,\iota\!\!\!}-}_+}{\partial {\bf B}_+} \cdot \frac{\partial {\bf B}_+}{\partial \Delta \psi_p} \end{array} \right) \left(\begin{array}{c} \displaystyle \frac{\partial \mu}{\partial x_j} \\ \displaystyle \frac{\partial \Delta \psi_p}{\partial x_j} \end{array} \right) = - \left(\begin{array}{c} \displaystyle \frac{\partial {{\,\iota\!\!\!}-}_-}{\partial {\bf B}_-} \cdot \frac{\partial {\bf B}_-}{\partial x_j} \\ \displaystyle \frac{\partial {{\,\iota\!\!\!}-}_+}{\partial {\bf B}_+} \cdot \frac{\partial {\bf B}_+}{\partial x_j} \end{array} \right). \end{eqnarray}
diotadxup
, see preset.f90 . Lcheck==4
.