SPEC 3.20
Stepped Pressure Equilibrium Code
|
Variables | |
integer, dimension(:), allocatable | allglobal::nadof |
degrees of freedom in Beltrami fields in each annulus | |
integer, dimension(:), allocatable | allglobal::nfielddof |
degrees of freedom in Beltrami fields in each annulus, field only, no Lagrange multipliers | |
type(subgrid), dimension(:,:,:), allocatable | allglobal::ate |
magnetic vector potential cosine Fourier harmonics; stellarator-symmetric | |
type(subgrid), dimension(:,:,:), allocatable | allglobal::aze |
magnetic vector potential cosine Fourier harmonics; stellarator-symmetric | |
type(subgrid), dimension(:,:,:), allocatable | allglobal::ato |
magnetic vector potential sine Fourier harmonics; non-stellarator-symmetric | |
type(subgrid), dimension(:,:,:), allocatable | allglobal::azo |
magnetic vector potential sine Fourier harmonics; non-stellarator-symmetric | |
integer, dimension(:,:), allocatable | allglobal::lma |
Lagrange multipliers (?) | |
integer, dimension(:,:), allocatable | allglobal::lmb |
Lagrange multipliers (?) | |
integer, dimension(:,:), allocatable | allglobal::lmc |
Lagrange multipliers (?) | |
integer, dimension(:,:), allocatable | allglobal::lmd |
Lagrange multipliers (?) | |
integer, dimension(:,:), allocatable | allglobal::lme |
Lagrange multipliers (?) | |
integer, dimension(:,:), allocatable | allglobal::lmf |
Lagrange multipliers (?) | |
integer, dimension(:,:), allocatable | allglobal::lmg |
Lagrange multipliers (?) | |
integer, dimension(:,:), allocatable | allglobal::lmh |
Lagrange multipliers (?) | |
real, dimension(:,:), allocatable | allglobal::lmavalue |
what is this? | |
real, dimension(:,:), allocatable | allglobal::lmbvalue |
what is this? | |
real, dimension(:,:), allocatable | allglobal::lmcvalue |
what is this? | |
real, dimension(:,:), allocatable | allglobal::lmdvalue |
what is this? | |
real, dimension(:,:), allocatable | allglobal::lmevalue |
what is this? | |
real, dimension(:,:), allocatable | allglobal::lmfvalue |
what is this? | |
real, dimension(:,:), allocatable | allglobal::lmgvalue |
what is this? | |
real, dimension(:,:), allocatable | allglobal::lmhvalue |
what is this? | |
integer, dimension(:,:), allocatable | allglobal::fso |
what is this? | |
integer, dimension(:,:), allocatable | allglobal::fse |
what is this? | |
logical | allglobal::lcoordinatesingularity |
set by LREGION macro; true if inside the innermost volume | |
logical | allglobal::lplasmaregion |
set by LREGION macro; true if inside the plasma region | |
logical | allglobal::lvacuumregion |
set by LREGION macro; true if inside the vacuum region | |
logical | allglobal::lsavedguvij |
flag used in matrix free | |
logical | allglobal::localconstraint |
what is this? | |
NAdof(1:Nvol)
. This depends on Mpol
, Ntor
and Lrad(vvol)
. \begin{eqnarray} A_\theta & = & \sum_i \sum_{l=0}^L {\color{red} A_{\theta,e,i,l}} \; T_{l}(s) \cos\alpha_i + \sum_i \sum_{l=0}^L {\color{Orange} A_{\theta,o,i,l}} \; T_{l}(s) \sin\alpha_i \\ A_\zeta & = & \sum_i \sum_{l=0}^L {\color{blue} A_{\zeta, e,i,l}} \; T_{l}(s) \cos\alpha_i + \sum_i \sum_{l=0}^L {\color{Cerulean}A_{\zeta ,o,i,l}} \; T_{l}(s) \sin\alpha_i , \end{eqnarray}
where \(T_l(s)\) are the Chebyshev polynomials and \(\alpha_i \equiv m_i \theta - n_i \zeta\).The following internal arrays are declared in preset() :
dAte(0,i)%s
(l) \(\equiv {\color{red} A_{\theta,e,i,l}}\)
dAze(0,i)%s
(l) \(\equiv {\color{blue} A_{\zeta, e,i,l}}\)
dAto(0,i)%s
(l) \(\equiv {\color{Orange} A_{\theta,o,i,l}}\)
dAzo(0,i)%s
(l) \(\equiv {\color{Cerulean}A_{\zeta ,o,i,l}}\)