LCA - Toy Model

LCA - Toy Model#

A simple demo of LCA

reference: Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: the leaky, competing accumulator model. Psychological Review, 108(3), 550–592. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11488378

adapted from: PrincetonUniversity/PsyNeuLink “””

Setup and Installation:

%%capture
%pip install psyneulink
%pip install seaborn
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns

import psyneulink as pnl

sns.set(style='white', context='poster', font_scale=.8, rc={"lines.linewidth": 2})
np.random.seed(0)

%matplotlib inline
%autosave 5
Autosaving every 5 seconds
# time step
time_step_size = .1

# network params
n_nodes = 3
sd = .2
leak = -1

# Weights
w_input = 1       # w_input (Input to decision layer)
w_cross = .1     # w_cross (Crosstalk input to decision layer)
w_inhib = 1       # w_inhib (Mutual inhibition among decision units)
w_self = 0     # w_self (Self recurrent conn. for each decision unit)
b_dec = 0    # b_dec (Bias input to decision units)

# Weight matrix from Input Layer --> Decision Layer
# Input weights are diagonals, cross weights are off diagonals
identity = np.matrix(np.eye(n_nodes))
mirror_identity = np.ones((n_nodes,n_nodes))
np.fill_diagonal(mirror_identity,0)
input_weights = identity * w_input + mirror_identity * w_cross

# initial states
initial_value = np.zeros((n_nodes,))
# initial_value = np.random.normal(size=(n_nodes,))
input_layer = pnl.TransferMechanism(
    size=n_nodes,                      # Number of units in input layer
    initial_value=np.zeros(n_nodes,),     # Initial input values
    name='INPUT LAYER'
)

decision_layer = pnl.LCAMechanism(
    size=n_nodes,                            # Number of units in input layer
    initial_value=initial_value,    # Initial input values
    time_step_size=time_step_size,     # Integration step size
    leak=leak,                         # Sets off diagonals to negative values
    self_excitation=w_self,           # Set diagonals to self excitate
    competition=w_inhib,                 # Set off diagonals to inhibit
    function=pnl.Logistic(x_0=b_dec),
    noise=pnl.UniformToNormalDist(standard_deviation=sd).function,
    integrator_mode=True,
    name='DECISION LAYER'
)

# Set initial output values for decision layer to 0
# for output_state in decision_layer.output_states:
#     output_state.value *= 0

decision_process = pnl.Process(
    pathway=[input_layer, input_weights, decision_layer],
    name='DECISION PROCESS'
)

model = pnl.System(
    processes=[decision_process],
    reinitialize_mechanisms_when=pnl.Never()
)
---------------------------------------------------------------------------
ComponentError                            Traceback (most recent call last)
Cell In[4], line 1
----> 1 input_layer = pnl.TransferMechanism(
      2     size=n_nodes,                      # Number of units in input layer
      3     initial_value=np.zeros(n_nodes,),     # Initial input values
      4     name='INPUT LAYER'
      5 )
      7 decision_layer = pnl.LCAMechanism(
      8     size=n_nodes,                            # Number of units in input layer
      9     initial_value=initial_value,    # Initial input values
   (...)     17     name='DECISION LAYER'
     18 )
     20 # Set initial output values for decision layer to 0
     21 # for output_state in decision_layer.output_states:
     22 #     output_state.value *= 0

File /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/psyneulink/core/globals/parameters.py:506, in check_user_specified.<locals>.check_user_specified_wrapper(self, *args, **kwargs)
    503     self._prev_constructor = constructor
    505 self._prev_kwargs = kwargs
--> 506 return func(self, *args, **orig_kwargs)

File <@beartype(psyneulink.core.components.mechanisms.processing.transfermechanism.TransferMechanism.__init__) at 0x7f447accf920>:176, in __init__(__beartype_object_139932095902992, __beartype_get_violation, __beartype_conf, __beartype_object_139932213316480, __beartype_object_139935450143936, __beartype_object_139936467789992, __beartype_object_139932094794288, __beartype_object_139936467790104, __beartype_object_139932094794352, __beartype_object_139932094794416, __beartype_object_139932094794480, __beartype_object_139932095724096, __beartype_object_139933100921472, __beartype_object_139932213272592, __beartype_object_139932213319984, __beartype_object_139932213320048, __beartype_object_139932213272672, __beartype_object_139932213320112, __beartype_object_139932213272752, __beartype_args_name_keywordable, __beartype_check_meta, __beartype_func, *args, **kwargs)

File /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/psyneulink/core/components/mechanisms/processing/transfermechanism.py:1361, in TransferMechanism.__init__(self, default_variable, input_shapes, input_ports, function, noise, clip, integrator_mode, integrator_function, initial_value, integration_rate, on_resume_integrator_mode, termination_measure, termination_threshold, termination_comparison_op, output_ports, params, name, prefs, **kwargs)
   1357 initial_value = self._parse_arg_initial_value(initial_value)
   1359 self._current_variable_index = 0
-> 1361 super(TransferMechanism, self).__init__(
   1362     default_variable=default_variable,
   1363     input_shapes=input_shapes,
   1364     input_ports=input_ports,
   1365     output_ports=output_ports,
   1366     initial_value=initial_value,
   1367     noise=noise,
   1368     integration_rate=integration_rate,
   1369     integrator_mode=integrator_mode,
   1370     clip=clip,
   1371     termination_measure=termination_measure,
   1372     termination_threshold=termination_threshold,
   1373     termination_comparison_op=termination_comparison_op,
   1374     integrator_function=integrator_function,
   1375     on_resume_integrator_mode=on_resume_integrator_mode,
   1376     function=function,
   1377     params=params,
   1378     name=name,
   1379     prefs=prefs,
   1380     **kwargs
   1381 )

File /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/psyneulink/core/globals/parameters.py:506, in check_user_specified.<locals>.check_user_specified_wrapper(self, *args, **kwargs)
    503     self._prev_constructor = constructor
    505 self._prev_kwargs = kwargs
--> 506 return func(self, *args, **orig_kwargs)

File /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/psyneulink/core/components/mechanisms/processing/processingmechanism.py:293, in ProcessingMechanism_Base.__init__(self, default_variable, input_shapes, input_ports, function, output_ports, params, name, prefs, context, **kwargs)
    270 @check_user_specified
    271 def __init__(self,
    272              default_variable=None,
   (...)    281              **kwargs
    282              ):
    283     """Abstract class for processing mechanisms
    284 
    285     :param variable: (value)
   (...)    290     :param context: (str)
    291     """
--> 293     super().__init__(default_variable=default_variable,
    294                      input_shapes=input_shapes,
    295                      input_ports=input_ports,
    296                      function=function,
    297                      output_ports=output_ports,
    298                      params=params,
    299                      name=name,
    300                      prefs=prefs,
    301                      context=context,
    302                      **kwargs
    303                      )

File /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/psyneulink/core/globals/parameters.py:506, in check_user_specified.<locals>.check_user_specified_wrapper(self, *args, **kwargs)
    503     self._prev_constructor = constructor
    505 self._prev_kwargs = kwargs
--> 506 return func(self, *args, **orig_kwargs)

File /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/psyneulink/core/components/mechanisms/mechanism.py:1762, in Mechanism_Base.__init__(self, default_variable, input_shapes, input_ports, input_labels, function, output_ports, output_labels, params, name, prefs, context, **kwargs)
   1756 from psyneulink.core.components.ports.outputport import OutputPort
   1757 register_category(entry=OutputPort,
   1758                   base_class=Port_Base,
   1759                   registry=self._portRegistry,
   1760                   )
-> 1762 super(Mechanism_Base, self).__init__(
   1763     default_variable=default_variable,
   1764     input_shapes=input_shapes,
   1765     function=function,
   1766     param_defaults=params,
   1767     prefs=prefs,
   1768     name=name,
   1769     input_ports=input_ports,
   1770     output_ports=output_ports,
   1771     input_labels_dict=input_labels,
   1772     output_labels_dict=output_labels,
   1773     **kwargs
   1774 )
   1776 # FIX: 10/3/17 - IS THIS CORRECT?  SHOULD IT BE INITIALIZED??
   1777 self._status = INITIALIZING

File /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/psyneulink/core/globals/parameters.py:506, in check_user_specified.<locals>.check_user_specified_wrapper(self, *args, **kwargs)
    503     self._prev_constructor = constructor
    505 self._prev_kwargs = kwargs
--> 506 return func(self, *args, **orig_kwargs)

File /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/psyneulink/core/components/shellclasses.py:82, in Mechanism.__init__(self, default_variable, input_shapes, function, param_defaults, name, prefs, **kwargs)
     73 @check_user_specified
     74 def __init__(self,
     75              default_variable=None,
   (...)     80              prefs=None,
     81              **kwargs):
---> 82     super().__init__(default_variable=default_variable,
     83                      input_shapes=input_shapes,
     84                      function=function,
     85                      param_defaults=param_defaults,
     86                      name=name,
     87                      prefs=prefs,
     88                      **kwargs)

File /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/psyneulink/core/globals/parameters.py:506, in check_user_specified.<locals>.check_user_specified_wrapper(self, *args, **kwargs)
    503     self._prev_constructor = constructor
    505 self._prev_kwargs = kwargs
--> 506 return func(self, *args, **orig_kwargs)

File /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/psyneulink/core/components/component.py:1146, in Component.__init__(self, default_variable, param_defaults, input_shapes, function, name, reset_stateful_function_when, prefs, function_params, **kwargs)
   1143 else:
   1144     self.reset_stateful_function_when = Never()
-> 1146 parameter_values, function_params = self._parse_arguments(
   1147     default_variable, param_defaults, input_shapes, function, function_params, kwargs
   1148 )
   1150 self._initialize_parameters(
   1151     context=context,
   1152     **parameter_values
   1153 )
   1155 var = call_with_pruned_args(
   1156     self._handle_default_variable,
   1157     **parameter_values
   1158 )

File /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/psyneulink/core/components/component.py:2245, in Component._parse_arguments(self, default_variable, param_defaults, input_shapes, function, function_params, kwargs)
   2240     function_params = {
   2241         **kwargs,
   2242         **function_params
   2243     }
   2244 else:
-> 2245     self._validate_arguments(parameter_values)
   2247 # self.parameters here still references <class>.parameters, but
   2248 # only unchanging attributes are needed here
   2249 for p in self.parameters:

File /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/psyneulink/core/components/component.py:2190, in Component._validate_arguments(self, parameter_values)
   2188 # raise deprecated argument errors
   2189 if len(deprecated_args) > 0:
-> 2190     raise create_illegal_argument_error([
   2191         f"'{arg}' is deprecated. Use '{new_arg}' instead"
   2192         for arg, new_arg in deprecated_args.items()
   2193     ])
   2195 # raise generic illegal argument error
   2196 unknown_args = illegal_passed_args.difference(unused_constructor_args)

ComponentError: INPUT LAYER: Illegal argument in constructor (type: TransferMechanism):
	'size' is deprecated. Use 'input_shapes' instead
model.show_graph(output_fmt = 'jupyter')
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[5], line 1
----> 1 model.show_graph(output_fmt = 'jupyter')

NameError: name 'model' is not defined
input_pattern_set = list(np.eye(n_nodes))
num_time_steps = 80
trials = 2
total_trial_length = trials * num_time_steps

stimuli = np.concatenate([
    np.repeat(np.array([pattern_i]), num_time_steps, axis=0)
    for pattern_i in input_pattern_set
])

# stimuli = np.concatenate([np.zeros((num_time_steps,n_nodes)) for _ in range(trials)])

# assign inputs to input_layer (Origin Mechanism) for each trial
stim_list_dict = {input_layer: stimuli}

# print out the inputs
print(input_pattern_set)

# run the system
r = model.run(inputs=stim_list_dict, num_trials=total_trial_length)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[6], line 14
      6 stimuli = np.concatenate([
      7     np.repeat(np.array([pattern_i]), num_time_steps, axis=0)
      8     for pattern_i in input_pattern_set
      9 ])
     11 # stimuli = np.concatenate([np.zeros((num_time_steps,n_nodes)) for _ in range(trials)])
     12 
     13 # assign inputs to input_layer (Origin Mechanism) for each trial
---> 14 stim_list_dict = {input_layer: stimuli}
     16 # print out the inputs
     17 print(input_pattern_set)

NameError: name 'input_layer' is not defined
sns.set_palette("colorblind")
# compute event bonds
bonds = np.arange(num_time_steps, total_trial_length, num_time_steps)

# fetch activities (n_time_points x n_neurons)
acts = np.squeeze(model.results)

# plot the dynamics
f, ax = plt.subplots(1,1, figsize = (12,5))

ax.plot(acts)

ax.set_title(f'Leaky, competitive dynamics across {n_nodes} units')
ax.set_xlabel('Time')
ax.set_ylabel('Activation')
f.legend([f'unit {i}' for i in range(n_nodes)], frameon=False, bbox_to_anchor=(1.1,.6))

for bond in bonds:
    ax.axvline(bond, color='grey', alpha=.5, linestyle='--')

f.tight_layout()
sns.despine()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[7], line 6
      3 bonds = np.arange(num_time_steps, total_trial_length, num_time_steps)
      5 # fetch activities (n_time_points x n_neurons)
----> 6 acts = np.squeeze(model.results)
      8 # plot the dynamics
      9 f, ax = plt.subplots(1,1, figsize = (12,5))

NameError: name 'model' is not defined