Main parameters
All temporal and spatial units are normalized correspondingly to the timestep $\Delta t$ and the cell size $\Delta x$; the fields are normalized to the fiducial value $B_{\rm norm}$, and the densities are normalized to $n_{\rm ppc}$. We use the following equations
For all the details on how the code units are defined see the following section.
$c=\mathrm{CC}\frac{\Delta x}{\Delta t}$
$d_e=\mathrm{COMP}\Delta x$
$n_{\rm ppc}=\mathrm{PPC}\Delta x^{-3}$
$\mathrm{CC}=$
$\mathrm{COMP}=$
$\mathrm{PPC}=$
$\sigma=$
$\omega_{\rm p}^{-1}=~$$~\Delta t$
$\omega_B^{-1}=(\gamma\beta)^{-1}~$$~\Delta t$
$r_L=\gamma\beta~$$~\Delta x$
Pulsar setup is initialized with a conducting sphere of radius $R_*$ in the middle of the simulation box. The field is initially dipolar with an enforced strength $B_*$ at the surface. The conductor rotates with a period $P$. .
We use the following equations (all the quantities are in code units)
$R_*=~$$~{\color{lightgray}\Delta x}$
$B_*=~$$~{\color{lightgray}B_{\rm norm}}$
$\frac{\Delta V_{\rm pc}}{m_e c^2}=~$
$d_e^*=~$${\color{lightgray}\langle\gamma\rangle^{1/2} \left(\frac{n}{n_{\rm GJ}^*}\right)^{-1/2} \Delta x}$
$n^*_{\rm GJ}=~$$~{\color{lightgray}\Delta x^{-3}}$
$\sigma^*=~$${\color{lightgray}\left(\frac{n}{n_{\rm GJ}^*}\right)^{-1}\left(\frac{B}{B_*}\right)^2}$
$R_{\rm LC}=~$$~{\color{lightgray}\Delta x}$
$B_{\rm LC}=~$$~{\color{lightgray}B_{\rm norm}}$
$d_e^{\rm LC}=~$${\color{lightgray}\langle\gamma\rangle^{1/2} \left(\frac{n}{n_{\rm GJ}^*}\right)^{-1/2} \Delta x}$
$r_L^{\rm LC}={\color{lightgray}\gamma\beta}~$${\color{lightgray}\left(\frac{B}{B_{\rm LC}}\right)^{-1} \Delta x}$
$s_{\rm LC}=~$
$n^{\rm LC}_{\rm GJ}=~$$~{\color{lightgray}\Delta x^{-3}}$
$\sigma^{\rm LC}=~$${\color{lightgray}\left(\frac{n}{n^{\rm LC}_{\rm GJ}}\right)^{-1}\left(\frac{B}{B_{\rm LC}}\right)^2}$